Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

The generalized Coates-Sinnott Conjecture for some families of cubic extensions of number fields

dc.contributor.advisorKolster, Manfreden_US
dc.contributor.authorGray, Darrenen_US
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2014-06-18T16:45:28Z
dc.date.available2014-06-18T16:45:28Z
dc.date.created2011-05-26en_US
dc.date.issued2009en_US
dc.description.abstract<p>Let E/<em>k</em> be an <em>S</em><sub>3</sub> extension of totally real number fields with quadratic subextension<em> F</em>/k. The generalized Coates-Sinnott conjecture predicts that for n ≥ 2, the integralized Stickelberger element <em>w</em><sub>n</sub>(<em>E</em>)<em>θ<sub>E/F</sub></em>(1-n) attached to the cyclic cubic extension<em> E</em>/F should annihilate the <em>p</em>-part of <em>H<sup>2</sup><sub>Μ</sub></em>(<em>Ο<sub>E</sub></em>, Z(<em>n</em>)) for all primes <em>p</em>. We show this to be true for all p ≠ 2, 3.</p>en_US
dc.description.degreeMaster of Science (MS)en_US
dc.identifier.otheropendissertations/4236en_US
dc.identifier.other5254en_US
dc.identifier.other2032788en_US
dc.identifier.urihttp://hdl.handle.net/11375/9081
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleThe generalized Coates-Sinnott Conjecture for some families of cubic extensions of number fieldsen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format