The generalized Coates-Sinnott Conjecture for some families of cubic extensions of number fields
| dc.contributor.advisor | Kolster, Manfred | en_US |
| dc.contributor.author | Gray, Darren | en_US |
| dc.contributor.department | Mathematics | en_US |
| dc.date.accessioned | 2014-06-18T16:45:28Z | |
| dc.date.available | 2014-06-18T16:45:28Z | |
| dc.date.created | 2011-05-26 | en_US |
| dc.date.issued | 2009 | en_US |
| dc.description.abstract | <p>Let E/<em>k</em> be an <em>S</em><sub>3</sub> extension of totally real number fields with quadratic subextension<em> F</em>/k. The generalized Coates-Sinnott conjecture predicts that for n ≥ 2, the integralized Stickelberger element <em>w</em><sub>n</sub>(<em>E</em>)<em>θ<sub>E/F</sub></em>(1-n) attached to the cyclic cubic extension<em> E</em>/F should annihilate the <em>p</em>-part of <em>H<sup>2</sup><sub>Μ</sub></em>(<em>Ο<sub>E</sub></em>, Z(<em>n</em>)) for all primes <em>p</em>. We show this to be true for all p ≠ 2, 3.</p> | en_US |
| dc.description.degree | Master of Science (MS) | en_US |
| dc.identifier.other | opendissertations/4236 | en_US |
| dc.identifier.other | 5254 | en_US |
| dc.identifier.other | 2032788 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11375/9081 | |
| dc.subject | Mathematics | en_US |
| dc.subject | Mathematics | en_US |
| dc.title | The generalized Coates-Sinnott Conjecture for some families of cubic extensions of number fields | en_US |
| dc.type | thesis | en_US |
Files
Original bundle
1 - 1 of 1