Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

FRECHET MEANS OF RIEMANNIAN DISTANCES: EVALUATIONS AND APPLICATIONS

dc.contributor.advisorWong, Kon Max
dc.contributor.advisorJeremic, Alexandar
dc.contributor.authorRazeghi Jahromi, Mehdi
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.date.accessioned2014-09-30T18:50:40Z
dc.date.available2014-09-30T18:50:40Z
dc.date.issued2014-11
dc.description.abstractThe space of symmetric positive definite matrices forms a manifold with an ambient is Euclidean space. In order to measure the distances between the objects on this manifold several metrics have been proposed. In this work we study the concept of averaging over the elements of the manifold by using the notion of Frechet mean. The main advantageous of this method is its connection to the metrics as a result of which we can utilize the Reimannian distances to obtain the mean of positive definite matrices. We consider three Reimannian metrics which have been developed on the manifold of symmetric positive definite matrices. The methods of obtaining the Frechet mean in the case of each metric will be discussed. The performance of each estimator will be demonstrated by using models based on matrix Cholesky factor, matrix square root and matrix logarithm. The deviation from the nominal covariance in each case will be evaluated using loss function, Euclidean distance and root Euclidean distance. We will see that depending on the model under investigation, Frechet mean of Reimannian distances performs better in most of the cases. In terms of application, we analyse the performance of each Frechet mean estimator in a classification task. For this purpose we evaluate the method of distance to the center of mass using the simulated data. This method will also be applied on the high content cell image data set in order to classify the cells with respect to the type of treatment that has been used.en_US
dc.description.degreeMaster of Science in Engineering (MSE)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/15983
dc.language.isoenen_US
dc.titleFRECHET MEANS OF RIEMANNIAN DISTANCES: EVALUATIONS AND APPLICATIONSen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TH1.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:
This file consists of my thesis

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: