Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

LANE TRACKING USING DEPENDENT EXTENDED TARGET MODELS

dc.contributor.advisorKirubarajan, Thia
dc.contributor.authorakbari, behzad
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.date.accessioned2021-03-15T20:19:20Z
dc.date.available2021-03-15T20:19:20Z
dc.date.issued2021
dc.description.abstractDetection of multiple-lane markings (lane-line) on road surfaces is an essential aspect of autonomous vehicles. Although several approaches have been proposed to detect lanes, detecting multiple lane-lines consistently, particularly across a stream of frames and under varying lighting conditions is still a challenging problem. Since the road's markings are designed to be smooth and parallel, lane-line sampled features tend to be spatially and temporally correlated inside and between frames. In this thesis, we develop novel methods to model these spatial and temporal dependencies in the form of the target tracking problem. In fact, instead of resorting to the conventional method of processing each frame to detect lanes only in the space domain, we treat the overall problem as a Multiple Extended Target Tracking (METT) problem. In the first step, we modelled lane-lines as multiple "independent" extended targets and developed a spline mathematical model for the shape of the targets. We showed that expanding the estimations across the time domain could improve the result of estimation. We identify a set of control points for each spline, which will track over time. To overcome the clutter problem, we developed an integrated probabilistic data association fi lter (IPDAF) as our basis, and formulated a METT algorithm to track multiple splines corresponding to each lane-line.In the second part of our work, we investigated the coupling between multiple extended targets. We considered the non-parametric case and modeled target dependency using the Multi-Output Gaussian Process. We showed that considering dependency between extended targets could improve shape estimation results. We exploit the dependency between extended targets by proposing a novel recursive approach called the Multi-Output Spatio-Temporal Gaussian Process Kalman Filter (MO-STGP-KF). We used MO-STGP-KF to estimate and track multiple dependent lane markings that are possibly degraded or obscured by traffic. Our method tested for tracking multiple lane-lines but can be employed to track multiple dependent rigid-shape targets by using the measurement model in the radial space In the third section, we developed a Spatio-Temporal Joint Probabilistic Data Association Filter (ST-JPDAF). In multiple extended target tracking problems with clutter, sometimes extended targets share measurements: for example, in lane-line detection, when two-lane markings pass or merge together. In single-point target tracking, this problem can be solved using the famous Joint Probabilistic Data Association (JPDA) filter. In the single-point case, even when measurements are dependent, we can stack them in the coupled form of JPDA. In this last chapter, we expanded JPDA for tracking multiple dependent extended targets using an approach called ST-JPDAF. We managed dependency of measurements in space (inside a frame) and time (between frames) using different kernel functions, which can be learned using the trained data. This extension can be used to track the shape and dynamic of dependent extended targets within clutter when targets share measurements. The performance of the proposed methods in all three chapters are quanti ed on real data scenarios and their results are compared against well-known model-based, semi-supervised, and fully-supervised methods. The proposed methods offer very promising results.en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/26254
dc.language.isoenen_US
dc.subjectLane detectionen_US
dc.subjectlane trackingen_US
dc.subjectMulti target trackingen_US
dc.subjectProbability data associationen_US
dc.subjectJoint probability data association coupled filteren_US
dc.subjectMulti output Gaussian processen_US
dc.subjectDependent multiple target trackingen_US
dc.subjectKernel based JPDACFen_US
dc.titleLANE TRACKING USING DEPENDENT EXTENDED TARGET MODELSen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis_Main.pdf
Size:
22.74 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: