Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Model Studies of Slag Metal Entrainment in Gas Stirred Ladles

dc.contributor.advisorIrons, Gordon
dc.contributor.authorSenguttuvan, Anand
dc.contributor.departmentMaterials Science and Engineeringen_US
dc.date.accessioned2016-09-23T19:55:12Z
dc.date.available2016-09-23T19:55:12Z
dc.date.issued2016
dc.description.abstractIn gas stirred steelmaking ladles, entrainment of slag into metal and vice versa takes place. The slag entrainment has been shown to abruptly increase the mass transfer rates of refining reactions through high temperature and water modeling studies of the past. However such an effect has not been correlated with the degree of entrainment, since the latter has not been quantified in terms of operating parameters like gas injection rate and fluid properties. Much of the past works are limited to finding the critical conditions for onset of entrainment. The difficulty lies in measuring the degree of entrainment in industrial ladles or even in a water model. Mathematical modeling is also challenging due to the complexity of the multiphase phenomena. So in this thesis, a modular mathematical modeling approach is presented wherein the phenomena of slag entrainment into metal is resolved into four aspects, models developed for each and finally integrated to study its role. The individual models are (1) multiphase large eddy simulations to simulate slag entrainment in a narrow domain that receives its boundary conditions from (2) single phase RANS simulation of a full ladle, (3) a Lagrangian particle tracking method to compute the residence times of slag droplets in metal phase and (4) a kinetic model that integrates the above three models to compute mass transfer rate as a function of degree of entrainment. Mass transfer rate predictions comparable to a literature correlation were obtained. This supports the modeling approach and also the assessment of role of various system parameters on entrainment characteristics. In essence, the present work shows a systematic approach to model and study the complex multiphase phenomena.en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.degreetypeThesisen_US
dc.description.layabstractThe entrainment of liquid slag into liquid steel in gas stirred-steelmaking ladles is known to increase the rate of refining drastically. However, there is lack of correlation between degree of entrainment and ladle operating conditions, which this thesis addresses through mathematical modeling.en_US
dc.identifier.urihttp://hdl.handle.net/11375/20499.1
dc.language.isoenen_US
dc.subjectSlag metal entrainmenten_US
dc.subjectsecondary steelmakingen_US
dc.subjectLarge Eddy Simulationen_US
dc.subjectSynthetic Eddy Methoden_US
dc.subjectGerris Flow Solveren_US
dc.subjectRANS turbulence modelen_US
dc.titleModel Studies of Slag Metal Entrainment in Gas Stirred Ladlesen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Senguttuvan_Anand_2016Aug_PhD.pdf
Size:
10.93 MB
Format:
Adobe Portable Document Format
Description:
Thesis Full Text
Loading...
Thumbnail Image
Name:
CODES.zip
Size:
364.33 KB
Format:
Unknown data format
Description:
Useful codes

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed upon to submission
Description:

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2017-05-31 15:22:56
Adding videos
1*
2016-09-23 15:55:12
* Selected version