Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Enabling Trimap-Free Image Matting via Multitask Learning

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Trimap-free natural image matting problem is an important computer vision task in which we extract foreground objects from given images without extra trimap input. Compared with trimap-based matting algorithms, trimap-free algorithms are easier to make false detection when the foreground object is not well defined. To solve the problem, we design a novel structure (SegMatting) to handle foreground segmentation and alpha matte prediction simultaneously, which is able to produce high-quality mattes based on RGB inputs alone. This entangled structure enables information exchange between the binary segmentation task and the alpha matte prediction task interactively, and we further design a hybrid loss to adaptively balance two tasks during the multitask learning process. Additionally, we adopt a salient object detection dataset to pretrain our network so that we could obtain a more accurate foreground segment before our training process. Experiments indicate that the proposed SegMatting qualitatively and quantitatively outperforms most previous trimap-free models with a significant margin, while remains competitive among trimap-based methods.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By