Automated Scanning Microelectrode Analysis of Epithelial K^+ Transport in Malpighian Tubules of Drosophilia melanogaster: Evidence for Spatial and Temporal Heterogeneity
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Malpighian (renal) tubules of the fruit fly Drosophila melanogaster consist of three functional domains: a non-secretory distal segment, a secretory main segment and a reabsorptive lower segment. In this study a computer-controlled micropositioning system and a self-referencing K^+ microelectrode were used to measure K^+ concentration gradients of extracellular unstirred layers associated with specific epithelial domains. K^+ fluxes were calculated from the measured gradients. This is the first time: that an accurate assessment of the concentration gradients of the unstirred layer of Drosophila melanogaster could be assessed due to the enhanced sensitivity of this self-referencing technique over conventional ion-selective microelectrodes. The technique permits high resolution spatial and temporal mapping of the flux patterns in response to stimulation or inhibition of ion transport. Variations in K^+ transport over time and at different sites suggest that transport is non-uniform within any one functional domain.