Non-collapsed Steady Ricci Solitons on a Cohomogeneity One-type Ansatz with a circle bundle over a product of Fano Kahler Einstein spaces as principal orbit
| dc.contributor.advisor | Wang, McKenzie | |
| dc.contributor.author | Mc Ginley, Dylan | |
| dc.contributor.department | Mathematics | en_US |
| dc.date.accessioned | 2025-04-28T18:23:05Z | |
| dc.date.available | 2025-04-28T18:23:05Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | We show a construction of Alexander Appleton giving new examples of non-collapsed non-Kahler steady Ricci solitons on a cohomogeneity one-type ansatz with principal bundle a line bundle over a single Fano Kahler Einstein base can be extended to the case where the base is a product of Fano Kahler Einstein manifolds. | en_US |
| dc.description.degree | Master of Science (MSc) | en_US |
| dc.description.degreetype | Thesis | en_US |
| dc.description.layabstract | By studying a nonlinear ODE, we produce new examples of special Riemannian metrics. | en_US |
| dc.identifier.uri | http://hdl.handle.net/11375/31565 | |
| dc.language.iso | en | en_US |
| dc.subject | Riemannian Geometry | en_US |
| dc.subject | Geometric Analysis | en_US |
| dc.title | Non-collapsed Steady Ricci Solitons on a Cohomogeneity One-type Ansatz with a circle bundle over a product of Fano Kahler Einstein spaces as principal orbit | en_US |
| dc.type | Thesis | en_US |