Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Generating Learning Algorithms: Hidden Markov Models as a Case Study

dc.contributor.advisorCarette, Jacquesen_US
dc.contributor.authorSzymczak, Danielen_US
dc.contributor.departmentSoftware Engineeringen_US
dc.date.accessioned2014-06-18T17:06:19Z
dc.date.available2014-06-18T17:06:19Z
dc.date.created2014-04-21en_US
dc.date.issued2014-04en_US
dc.description.abstract<p>This thesis presents the design and implementation of a source code generator for dealing with Bayesian statistics. The specific focus of this case study is to produce usable source code for handling Hidden Markov Models (HMMs) from a Domain Specific Language (DSL).</p> <p>Domain specific languages are used to allow domain experts to design their source code from the perspective of the problem domain. The goal of designing in such a way is to increase the development productivity without requiring extensive programming knowledge.</p>en_US
dc.description.degreeMaster of Applied Science (MASc)en_US
dc.identifier.otheropendissertations/8928en_US
dc.identifier.other10005en_US
dc.identifier.other5506238en_US
dc.identifier.urihttp://hdl.handle.net/11375/14101
dc.subjectcode generationen_US
dc.subjecthidden markov modelsen_US
dc.subjectdomain specific languagesen_US
dc.subjectmachine learningen_US
dc.subjectbayesian statisticsen_US
dc.subjectOther Engineeringen_US
dc.subjectOther Engineeringen_US
dc.titleGenerating Learning Algorithms: Hidden Markov Models as a Case Studyen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
675.7 KB
Format:
Adobe Portable Document Format