Products and Factorizations of Graphs
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
It is shown that the cardinal product of graphs does not satisfy unique prime factorization even for a very restrictive class of graphs. It is also proved that every connected graph has a decomposition as a weak cartesian product into indecomposable factors and that this decomposition is unique to within isomorphisms. This latter result is established by considering a certain class of equivalence relations on the edge set of a graph and proving that this collection is a principal filter in the lattice of all equivalences. The least element of this filter is then used to decompose the graph into a weak cartesian product of prime graphs that is unique to within isomorphisms.