Microfabricated pH, temperature, and free chlorine sensors for integrated drinking water quality monitoring systems
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The monitoring of pH and free chlorine concentration in drinking water is important for
water safety and public health. However, existing laboratory-based analytical methods are
laborious, inefficient, and costly. This thesis focuses on the development of an easy-to-use,
sensitive, and low-cost drinking water quality monitoring system for pH and free chlorine.
An inkjet printing technology with a two-step thermolysis process in air is developed to
deposit palladium/palladium oxide (Pd/PdO) films as potentiometric pH sensing electrodes.
The redox reaction between PdO and hydronium ions generates the sensor output voltage.
A large PdO percentage in the film provides a high sensitivity of ~60 mV/pH. A defect-free
Pd/PdO film with small roughness contributes to a fast response and a high stability.
When the Pd ink is thermalized in low vacuum, the deposited Pd/PdO film shows a bilayer
structure. The residual oxygen in the low vacuum environment assists the decomposition
of organic ligands for Pd to form a thin and continuous layer beneath submicron Pd
aggregates. The oxidized bilayer film behaves as a temperature sensor with a sensitivity of
0.19% resistance change per °C, which can be used to compensate the sensed pH signals.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is drawn by hand
to form a free chlorine sensor. Free chlorine oxidises PEDOT:PSS, whose resistivity
increment indicates the free chlorine concentration in the range of 0.5-500 ppm. Also, we
simplified an amperometric free chlorine sensor based on amine-modified pencil leads. The
simplified sensor is calibration-free, potentiostat-free, and easy-to-use.
The pH, temperature, and free chlorine sensors are fabricated on a common substrate and
connected to a field-programmable gate array board for data processing and display. The
sensing system is user-friendly, cheap, and can accurately monitor real water samples.