Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Microfabricated pH, temperature, and free chlorine sensors for integrated drinking water quality monitoring systems

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The monitoring of pH and free chlorine concentration in drinking water is important for water safety and public health. However, existing laboratory-based analytical methods are laborious, inefficient, and costly. This thesis focuses on the development of an easy-to-use, sensitive, and low-cost drinking water quality monitoring system for pH and free chlorine. An inkjet printing technology with a two-step thermolysis process in air is developed to deposit palladium/palladium oxide (Pd/PdO) films as potentiometric pH sensing electrodes. The redox reaction between PdO and hydronium ions generates the sensor output voltage. A large PdO percentage in the film provides a high sensitivity of ~60 mV/pH. A defect-free Pd/PdO film with small roughness contributes to a fast response and a high stability. When the Pd ink is thermalized in low vacuum, the deposited Pd/PdO film shows a bilayer structure. The residual oxygen in the low vacuum environment assists the decomposition of organic ligands for Pd to form a thin and continuous layer beneath submicron Pd aggregates. The oxidized bilayer film behaves as a temperature sensor with a sensitivity of 0.19% resistance change per °C, which can be used to compensate the sensed pH signals. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is drawn by hand to form a free chlorine sensor. Free chlorine oxidises PEDOT:PSS, whose resistivity increment indicates the free chlorine concentration in the range of 0.5-500 ppm. Also, we simplified an amperometric free chlorine sensor based on amine-modified pencil leads. The simplified sensor is calibration-free, potentiostat-free, and easy-to-use. The pH, temperature, and free chlorine sensors are fabricated on a common substrate and connected to a field-programmable gate array board for data processing and display. The sensing system is user-friendly, cheap, and can accurately monitor real water samples.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By