Hyperbolic Distributions and Transformations for Clustering Incomplete Data with Extensions to Matrix Variate Normality
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Under realistic scenarios, data are often incomplete, asymmetric, or of high-dimensionality.
More intricate data structures often render standard approaches infeasible due to
methodological or computational limitations. This monograph consists of four contributions each solving a specific problem within model-based clustering. An R package
is developed consisting of a three-phase imputation method for both elliptical and hyperbolic parsimonious models. A novel stochastic technique is employed to speed up
computations for hyperbolic distributions demonstrating superior performance overall. A hyperbolic transformation model is conceived for clustering asymmetrical data
within a heterogeneous context. Finally, for high-dimensionality, a framework is developed for assessing matrix variate normality within three-way datasets. All things
considered, this work constitutes a powerful set of tools to deal with the ever-growing
complexity of big data