Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Fréchet Algebras with Schauder Bases

dc.contributor.advisorHusain, T.en_US
dc.contributor.authorLiang, Jaungen_US
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2014-06-18T16:43:14Z
dc.date.available2014-06-18T16:43:14Z
dc.date.created2010-12-22en_US
dc.date.issued1975-03en_US
dc.description.abstract<p>Let A be a Fréchet algebra with the defining sequence {qn}n≥1 of seminorms and identity e. Let {xᵢ} be a Schauder basis in A. Then each xεA, can be written as: x = ᵢ∑₁αᵢxᵢ, where {αᵢ} is a unique sequence of complex numbers depending upon x. αᵢ's are called coordinate functionals or coefficients. This thesis is concerned with some relations among coefficients, seminorms and the identity, e of A. Further, it is shown that each multiplicative linear functional on A is continuous provided a certain condition is satisfied. Some of the results needed to prove the above results are shown to be true for Fréchet spaces. Finally, a representation theorem for Fréchet * - algebra is given.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/3745en_US
dc.identifier.other4762en_US
dc.identifier.other1708195en_US
dc.identifier.urihttp://hdl.handle.net/11375/8548
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleFréchet Algebras with Schauder Basesen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format