Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

A decomposition approach for finding the setup number of a partial order

dc.contributor.authorSteiner, Georgeen_US
dc.contributor.authorMcMaster University, Faculty of Businessen_US
dc.date.accessioned2014-06-17T20:39:07Z
dc.date.available2014-06-17T20:39:07Z
dc.date.created2013-12-23en_US
dc.date.issued1984-04en_US
dc.description<p>18, 7 leaves : ; Includes bibliographical references (leaves 14-15). ;</p>en_US
dc.description.abstract<p>Consider the linear extensions of a partial order. A setup occurs in a linear extension if two consecutive elements are unrelated in the partial order. The setup problem is to find a linear extension of the ordered set which contains the smallest possible number of setups. We present a decomposition approach for this problem. Based on this some new complexity results follow.</p>en_US
dc.identifier.otherdsb/118en_US
dc.identifier.other1117en_US
dc.identifier.other4944141en_US
dc.identifier.urihttp://hdl.handle.net/11375/5456
dc.relation.ispartofseriesResearch and working paper series (McMaster University. Faculty of Business)en_US
dc.relation.ispartofseriesno. 220en_US
dc.subject.lccDecomposition (Mathematics) Algorithmsen_US
dc.titleA decomposition approach for finding the setup number of a partial orderen_US
dc.typearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
618.07 KB
Format:
Adobe Portable Document Format