On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Recent work on fractionally-supervised classification (FSC), an approach that allows classification to be carried out with a fractional amount of weight given to the unla- belled points, is extended in two important ways. First, and of fundamental impor- tance, the question over how to choose the amount of weight given to the unlabelled points is addressed. Then, the FSC approach is extended to mixtures of multivariate t-distributions. The first extension is essential because it makes FSC more readily applicable to real problems. The second, although less fundamental, demonstrates the efficacy of FSC beyond Gaussian mixture models.