Dynamic Soil Water Repellency in Hydrologic Systems
Loading...
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Dynamic soil water repellency is an important soil phenomenon in the vadose zone as it is now recognised that most soils in the world are likely to express some degree of reduced wettability and/or long term hydrophobicity. Fractional wettability and contact angles are, however, rarely discussed or quantified for natural systems. This is particularly the case in the presence of dynamic contact angles. Soil water repellency remains a persistent impediment and challenge to accurate conceptual and numerical models of flow and storage in the vadose zone. This dissertation addresses the opportunity and pressing need for contributions that develop better quantifiable definitions, descriptions, and understanding of soil water repellency. Using materials collected from post wildfire sites, this work employs water and ethanol to identify, isolate, and quantify contact angle dynamics and fractional wettability effects during infiltration. Varied concentrations of water and ethanol solutions were applied to soils and observed through X-ray microtomography, tension infiltration experiments, and moisture content measurements in the laboratory and field. Several analyses from lab and field investigations showed that applications of ethanol and specifically, water-ethanol aqueous solutions provide unique additional insights into proportions of media that remain non-wettable and how those proportions affect overall hydrologic processes, which are not readily observable through water infiltrations alone. Observations include the wetting up of microporous structures, reduced storage, and changes in unsaturated hydraulic conductivities. Challenges which develop as a consequence of variable fluid properties including changes to operational pore assemblages, slow down of wetting fronts, and non-uniqueness relative to infiltration responses are addressed. Important insights and contributions were developed through this approach and water-ethanol mixtures are valuable tools for developing greater quantification and mechanistic data to better inform our models and understanding of dynamic soil water repellency.