De-novo Chemical Reaction Generation by Means of Temporal Convolutional Neural Networks
| dc.contributor.author | Buin A | |
| dc.contributor.author | Chiang HY | |
| dc.contributor.author | Gadsden SA | |
| dc.contributor.author | Alderson FA | |
| dc.contributor.department | Mechanical Engineering | |
| dc.date.accessioned | 2025-03-03T23:39:38Z | |
| dc.date.available | 2025-03-03T23:39:38Z | |
| dc.date.issued | 2023-10-26 | |
| dc.date.updated | 2025-03-03T23:39:37Z | |
| dc.identifier.doi | https://doi.org/10.48550/arxiv.2310.17341 | |
| dc.identifier.uri | http://hdl.handle.net/11375/31373 | |
| dc.subject | 46 Information and Computing Sciences | |
| dc.subject | 4611 Machine Learning | |
| dc.subject | Networking and Information Technology R&D (NITRD) | |
| dc.subject | Bioengineering | |
| dc.subject | Neurosciences | |
| dc.subject | Machine Learning and Artificial Intelligence | |
| dc.subject | 1.1 Normal biological development and functioning | |
| dc.title | De-novo Chemical Reaction Generation by Means of Temporal Convolutional Neural Networks | |
| dc.type | Article |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2310.17341v3.pdf
- Size:
- 1.48 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version