Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

A LIGHTWEIGHT CAMERA-LIDAR FUSION FRAMEWORK FOR TRAFFIC MONITORING APPLICATIONS

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Intelligent Transportation Systems are advanced technologies used to reduce traffic and increase road safety for vulnerable road users. Real-time traffic monitoring is an important technology for collecting and reporting the information required to achieve these goals through the detection and tracking of road users inside an intersection. To be effective, these systems must be robust to all environmental conditions. This thesis explores the fusion of camera and Light Detection and Ranging (LiDAR) sensors to create an accurate and real-time traffic monitoring system. Sensor fusion leverages complimentary characteristics of the sensors to increase system performance in low- light and inclement weather conditions. To achieve this, three primary components are developed: a 3D LiDAR detection pipeline, a camera detection pipeline, and a decision-level sensor fusion module. The proposed pipeline is lightweight, running at 46 Hz on modest computer hardware, and accurate, scoring 3% higher than the camera-only pipeline based on the Higher Order Tracking Accuracy metric. The camera-LiDAR fusion system is built on the ROS 2 framework, which provides a well-defined and modular interface for developing and evaluated new detection and tracking algorithms. Overall, the fusion of camera and LiDAR sensors will enable future traffic monitoring systems to provide cities with real-time information critical for increasing safety and convenience for all road-users.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By