A LIGHTWEIGHT CAMERA-LIDAR FUSION FRAMEWORK FOR TRAFFIC MONITORING APPLICATIONS
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Intelligent Transportation Systems are advanced technologies used to reduce traffic
and increase road safety for vulnerable road users. Real-time traffic monitoring is an
important technology for collecting and reporting the information required to achieve
these goals through the detection and tracking of road users inside an intersection. To
be effective, these systems must be robust to all environmental conditions. This thesis
explores the fusion of camera and Light Detection and Ranging (LiDAR) sensors to
create an accurate and real-time traffic monitoring system. Sensor fusion leverages
complimentary characteristics of the sensors to increase system performance in low-
light and inclement weather conditions. To achieve this, three primary components
are developed: a 3D LiDAR detection pipeline, a camera detection pipeline, and a
decision-level sensor fusion module. The proposed pipeline is lightweight, running
at 46 Hz on modest computer hardware, and accurate, scoring 3% higher than the
camera-only pipeline based on the Higher Order Tracking Accuracy metric. The
camera-LiDAR fusion system is built on the ROS 2 framework, which provides a
well-defined and modular interface for developing and evaluated new detection and
tracking algorithms. Overall, the fusion of camera and LiDAR sensors will enable
future traffic monitoring systems to provide cities with real-time information critical
for increasing safety and convenience for all road-users.