Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

The Second Chinburg Conjecture for Quaternion Fields

dc.contributor.advisorSnaith, V.P.en_US
dc.contributor.authorTran, Van Minhen_US
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2014-06-18T16:38:17Z
dc.date.available2014-06-18T16:38:17Z
dc.date.created2010-07-08en_US
dc.date.issued1996en_US
dc.description.abstract<p>This thesis is a part of a program to study the Second Chinburg Conjecture. Let N be a quaternion extension of the rational; containing Q(√d₁,√d₂), where d₁ ≡ 3 (mod 8) and d₂ ≡ 10 (mod 16). A projective Z[Q₈]-module inside the ring of integers ON is constructed and is used, together with a cohomological classification of cohomologically trivial, 2-primary Q-modules, to compare Ω(N/Q,2), Chinburg's second invariant, with WN/Q, the root number class defined by Ph. Cassou-Nougès and A. Fröhlich. The Second Chinburg Conjecture for this extension N/Q is confirmed. Together with results of J. Hooper and S. Kim this calculation verifies the Second Chinburg Conjecture for all quaternion extensions of the rationals.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/2429en_US
dc.identifier.other3494en_US
dc.identifier.other1386425en_US
dc.identifier.urihttp://hdl.handle.net/11375/7138
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleThe Second Chinburg Conjecture for Quaternion Fieldsen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format