The Second Chinburg Conjecture for Quaternion Fields
| dc.contributor.advisor | Snaith, V.P. | en_US |
| dc.contributor.author | Tran, Van Minh | en_US |
| dc.contributor.department | Mathematics | en_US |
| dc.date.accessioned | 2014-06-18T16:38:17Z | |
| dc.date.available | 2014-06-18T16:38:17Z | |
| dc.date.created | 2010-07-08 | en_US |
| dc.date.issued | 1996 | en_US |
| dc.description.abstract | <p>This thesis is a part of a program to study the Second Chinburg Conjecture. Let N be a quaternion extension of the rational; containing Q(√d₁,√d₂), where d₁ ≡ 3 (mod 8) and d₂ ≡ 10 (mod 16). A projective Z[Q₈]-module inside the ring of integers ON is constructed and is used, together with a cohomological classification of cohomologically trivial, 2-primary Q-modules, to compare Ω(N/Q,2), Chinburg's second invariant, with WN/Q, the root number class defined by Ph. Cassou-Nougès and A. Fröhlich. The Second Chinburg Conjecture for this extension N/Q is confirmed. Together with results of J. Hooper and S. Kim this calculation verifies the Second Chinburg Conjecture for all quaternion extensions of the rationals.</p> | en_US |
| dc.description.degree | Doctor of Philosophy (PhD) | en_US |
| dc.identifier.other | opendissertations/2429 | en_US |
| dc.identifier.other | 3494 | en_US |
| dc.identifier.other | 1386425 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11375/7138 | |
| dc.subject | Mathematics | en_US |
| dc.subject | Mathematics | en_US |
| dc.title | The Second Chinburg Conjecture for Quaternion Fields | en_US |
| dc.type | thesis | en_US |
Files
Original bundle
1 - 1 of 1