Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

18/12 Switched Reluctance Motor Design For A Mild-Hybrid Electric Powertrain Application

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

With the depletion of oil wells and changing global climate, a large emphasis is placed on the research, development and adoption of electric vehicles (EVs) to replace vehicles driven by internal combustion engines (ICEs). However the global supply chain is still not ready for such a large demand in EVs; therefore hybrid electric vehicles (HEVs) aim to ease the transition between ICEs and EVs. The research outlined in this thesis investigates the design of a 18 stator, 12 rotor pole (18/12) configuration switched reluctance machine (SRM) utilizing novel technologies for use as a belt alternator starter (BAS) motor in an HEV. Background research on current trends and technologies for electric motors and vehicles is performed before evaluating initial geometry for the motor core to be designed. Initial geometry is brought into JMAG to develop an electromagnetic model and begin the geometry optimization. The 18/12 design process highlights how changes to motor parameters from a geometry and winding standpoint will affect motor performance. After the motor core geometry yields suitable performance, a mechanical design is proposed encompassing the rotary assembly, cooling as well as solutions for mounting.

Description

A novel belt alternator starter (BAS) is proposed to replace the starter and alternator in a hybrid electric vehicle. The BAS designed utilizes an 18 rotor, 12 stator pole switched reluctance machine (SRM) configuration, with concentrated bar windings wound in parallel. Through iteration of various machine geometry parameters, the SRM can meet the torque and speeds demands over standardized drive cycles described by the US Environmental Protection Agency.

Citation

Endorsement

Review

Supplemented By

Referenced By