Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Wave exposure and hydrologic connectivity create diversity in habitat and zooplankton assemblages at nearshore Long Point Bay, Lake Erie

dc.contributor.authorThomasen S
dc.contributor.authorGilbert J
dc.contributor.authorChow-Fraser P
dc.contributor.departmentBiology
dc.date.accessioned2025-01-11T19:34:00Z
dc.date.available2025-01-11T19:34:00Z
dc.date.issued2013-03
dc.date.updated2025-01-11T19:33:59Z
dc.description.abstractDuring an 11-day period in August 2008, we visited 102 sites along the nearshore (~60 km) of Long Point Bay. The purpose of our study was to evaluate the effects of wave exposure and hydrologic connectivity on zooplankton distributions. Long Point is located within the UNESCO Long Point Biosphere Reserve (26,250. ha) and encompasses the largest wetland complex in the Great Lakes system. We sampled for zooplankton, aquatic vegetation, temperature, specific conductance, pH, dissolved oxygen, dissolved organic carbon, water clarity, total nitrogen and depth. We evaluated the impacts of exposure using wind and fetch data to calculate a Relative Exposure Index (REI). Ordination techniques revealed a large variation in physical disturbance, water clarity, nutrient concentrations, water chemistry and aquatic vegetation that explained the distribution pattern of zooplankton at the 102 sites. Gradients of REI are strongly positively correlated with environmental variables, such as pH, dissolved oxygen and temperature and highly negatively correlated with conductivity and dissolved organic carbon. Visual inspection of the ordination site scores revealed the 102 sites clustering into six main groups based on spatial location and degree of surface-water connectivity to Long Point Bay. Sheltered sites (low REI) have much higher abundance of zooplankton whereas sites that have high REI scores are characterized by relatively low zooplankton abundance with a high prevalence of Polyarthra sp. This is the largest study on the distribution pattern of zooplankton in Long Point Bay, and it highlights the importance of wave exposure and hydrologic connectivity in structuring the zooplankton community. © 2012 Elsevier B.V.
dc.identifier.doihttps://doi.org/10.1016/j.jglr.2012.12.014
dc.identifier.issn0380-1330
dc.identifier.urihttp://hdl.handle.net/11375/30769
dc.publisherElsevier
dc.subject31 Biological Sciences
dc.subject3103 Ecology
dc.titleWave exposure and hydrologic connectivity create diversity in habitat and zooplankton assemblages at nearshore Long Point Bay, Lake Erie
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thomasen et al. 2013.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format