Development and Evaluation of Polaris CANDU Geometry Modelling and of TRACE_Mac/PARCS_Mac Coupling with RRS for CANDU Analysis
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In the field of nuclear safety analysis, as computers have become more powerful,
there has been a trend away from low-fidelity models using conservative assumptions, to
high-fidelity best-estimate models combined with uncertainty analysis. A number of these
tools have been developed in the United States, due to the popularity of light water
reactors. These include the SCALE analysis suite developed by ORNL, as well as the PARCS
and TRACE tools backed by the USNRC. This work explores adapting the capabilities of
these tools to the analysis of CANDU reactors.
The Polaris sequence, introduced in SCALE 6.2, was extended in this work to support
CANDU geometries and compared to existing SCALE sequences such as TRITON. Emphasis
was placed on the Embedded Self-Shielding Method (ESSM), introduced with Polaris. Both
Polaris and ESSM were evaluated and found to perform adequately for CANDU
geometries. The accuracy of ESSM was found to improve when the precomputed selfshielding
factors were updated using a CANDU representation.
The PARCS diffusion code and the TRACE system thermalhydraulics code were
coupled, using the built-in coupling capability between the two codes. In addition, the
Exterior Communications Interface (ECI), used for coupling with TRACE, was utilized. A
Python interface to the ECI library was developed in this work and used to couple an RRS
model written in Python to the coupled PARCS/TRACE model. A number of code
modifications were made to accommodate the required coupling and correct code
deficiencies, with the modified versions named PARCS_Mac and TRACE_Mac. The
coupled codes were able to simulate multiple transients based on prior studies as well as
operational events. The code updates performed in this work may be used for many
future studies, particularly for uncertainty propagation through a full set of calculations,
from the lattice model to a full coupled system model.
Description
McMaster University DOCTOR OF PHILOSOPHY (2022) Hamilton, Ontario (Engineering
Physics)
TITLE: Development and Evaluation of Polaris CANDU Geometry Modelling and of
TRACE_Mac/PARCS_Mac Coupling with RRS for CANDU Analysis
AUTHOR: Simon Younan, M.A.Sc. (McMaster University), B.Eng. (McMaster University)
SUPERVISOR: Dr. David Novog
NUMBER OF PAGES: xiv, 163