Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Influence of Fine-scale Niobium Carbonitride Precipitates on Hydrogen-Induced Cracking of X70 Pipeline Steel

dc.contributor.advisorKish, Joey
dc.contributor.advisorMcDermid, Joseph
dc.contributor.authorWojnas, Caroline Theresa
dc.contributor.departmentMaterials Science and Engineeringen_US
dc.date.accessioned2022-01-26T14:27:13Z
dc.date.available2022-01-26T14:27:13Z
dc.date.issued2021
dc.description.abstractThe microstructure of steel is well known to affect hydrogen-induced cracking (HIC) susceptibility by having certain heterogeneities serving as effective hydrogen trap sites. A consensus on whether or not fine-scale niobium carbide (NbC), nitride (NbN) and carbonitride (Nb(C,N)) precipitates can behave as effective hydrogen traps has yet to be established. The H-trapping capacity of Nb precipitates in a Fe-C-Mn-Nb model steel was investigated with the goal of minimizing embrittlement effects and improving the design of X70 pipeline grade steel for sour service oil and gas applications. First, a heat treatment was applied to the model steel to change the Nb-based precipitate size distribution, which was subsequently characterized via transmission electron microscopy, electron energy loss spectroscopy, and atom probe tomography. The experimental heat treatment increased the number of fine-scale precipitates (<15 nm) that are ideal for APT characterization. NbN and NbC precipitates of various stoichiometries were confirmed within the steel. Further, a custom electrolytic H-charging device was designed, fabricated, and validated using thermal desorption spectroscopy. Additionally, the extent of galvanic corrosion between NbC and NbN and the steel matrix was determined using custom scaled-up particle matrix specimens. Potentiodynamic polarizations conducted using active and passivating electrolytes revealed the relative nobility of the materials. Both NbC and NbN particles were more noble than the steel matrix; thus, possessing driving force for galvanic corrosion, with the particles serving as cathodes. Future studies involving electrolytic charging of the steel in a D-based electrolyte coupled with atom probe tomography will facilitate the direct observation of H-trapping sites relative to various Nb-based precipitates and contribute to an improved understanding of the mechanisms governing HIC.en_US
dc.description.degreeMaster of Science in Materials Science and Engineering (MSMSE)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/27314
dc.language.isoenen_US
dc.subjectCorrosion resistanceen_US
dc.subjectHydrogen-induced cracking (HIC)en_US
dc.subjectHigh strength low alloy (HSLA)en_US
dc.subjectNb contenten_US
dc.titleInfluence of Fine-scale Niobium Carbonitride Precipitates on Hydrogen-Induced Cracking of X70 Pipeline Steelen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wojnas_Caroline_T_2021 December_MASc in Materials Science and Engineering.pdf
Size:
11.04 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: