Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Deep Convolutional Neural Networks for Multiclassification of Imbalanced Liver MRI Sequence Dataset

dc.contributor.advisorDoyle, Thomas
dc.contributor.authorTrivedi, Aditya
dc.contributor.departmenteHealthen_US
dc.date.accessioned2020-09-09T15:54:39Z
dc.date.available2020-09-09T15:54:39Z
dc.date.issued2020
dc.description.abstractApplication of deep learning in radiology has the potential to automate workflows, support radiologists with decision support, and provide patients a logic-based algorithmic assessment. Unfortunately, medical datasets are often not uniformly distributed due to a naturally occurring imbalance. For this research, a multi-classification of liver MRI sequences for imaging of hepatocellular carcinoma (HCC) was conducted on a highly imbalanced clinical dataset using deep convolutional neural network. We have compared four multi classification classifiers which were Model A and Model B (both trained using imbalanced training data), Model C (trained using augmented training images) and Model D (trained using under sampled training images). Data augmentation such as 45-degree rotation, horizontal and vertical flip and random under sampling were performed to tackle class imbalance. HCC, the third most common cause of cancer-related mortality [1], can be diagnosed with high specificity using Magnetic Resonance Imaging (MRI) with the Liver Imaging Reporting and Data System (LI-RADS). Each individual MRI sequence reveals different characteristics that are useful to determine likelihood of HCC. We developed a deep convolutional neural network for the multi-classification of imbalanced MRI sequences that will aid when building a model to apply LI-RADS to diagnose HCC. Radiologists use these MRI sequences to help them identify specific LI-RADS features, it helps automate some of the LIRADS process, and further applications of machine learning to LI-RADS will likely depend on automatic sequence classification as a first step. Our study included an imbalanced dataset of 193,868 images containing 10 MRI sequences: in- phase (IP) chemical shift imaging, out-phase (OOP) chemical shift imaging, T1-weighted post contrast imaging (C+, C-, C-C+), fat suppressed T2 weighted imaging (T2FS), T2 weighted imaging, Diffusion Weighted Imaging (DWI), Apparent Diffusion Coefficient map (ADC) and In phase/Out of phase (IPOOP) imaging. Model performance for Models A, B, C and D provided a macro average F1 score of 0.97, 0.96, 0.95 and 0.93 respectively. Model A showed higher classification scores than models trained using data augmentation and under sampling.en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/25780
dc.language.isoenen_US
dc.subjectImbalanceden_US
dc.subjectMedical Imagingen_US
dc.subjectDeep Learningen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectClinical Decision Supporten_US
dc.subjectRadiologyen_US
dc.titleDeep Convolutional Neural Networks for Multiclassification of Imbalanced Liver MRI Sequence Dataseten_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Trivedi_Aditya_H_2020_Aug_MSc_eHealth.pdf
Size:
4.21 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: