Infinite discrete group actions
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The nature of this paper is expository. The purpose is to present the fundamental material concerning actions of infinite discrete groups on the n-sphere and pseudo-Riemannian space forms based on the works of Gehring, Martin and Kulkarni and provide appropriate examples. Actions on the n-sphere split it into ordinary and limit sets. Assuming, additionally, that a group acting on the n-sphere has a certain convergence property, this thesis includes conditions for the existence of a homeomorphism between the limit set and the set of Freudenthal ends, as well as topological and quasiconformal conjugacy between convergence and Mobius groups. Since the certain pseudo-Riemannian space forms are diffeomorphic to non-compact spaces, the work of Hambleton and Pedersen gives conditions for the extension of discrete co-compact group actions on pseudo-Riemannian space forms to actions on the sphere. An example of such an extension is described.