Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Longitudinal Clustering via Mixtures of Multivariate Power Exponential Distributions

dc.contributor.advisorMcNicholas, Paul
dc.contributor.authorPatel, Nidhi
dc.contributor.departmentStatisticsen_US
dc.date.accessioned2016-09-23T16:42:46Z
dc.date.available2016-09-23T16:42:46Z
dc.date.issued2016
dc.description.abstractA mixture model approach for clustering longitudinal data is introduced. The approach, which is based on mixtures of multivariate power exponential distributions, allows for varying tail-weight and peakedness in data. In the longitudinal setting, this corresponds to more or less concentration around the most central time course in a component. The models utilize a modified Cholesky decomposition of the component scale matrices and the associated maximum likelihood estimators are derived via a generalized expectation-maximization algorithm.en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/20406
dc.language.isoenen_US
dc.subjectlongitudinal dataen_US
dc.subjectmodel-based clusteringen_US
dc.subjectmixture modelsen_US
dc.subjectpower exponential distributionen_US
dc.titleLongitudinal Clustering via Mixtures of Multivariate Power Exponential Distributionsen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Patel_Nidhi_P_2016August_MSc.pdf
Size:
706.51 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed upon to submission
Description: