Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Hessenberg Patch Ideals of Codimension 1

dc.contributor.advisorHarada, Megumi
dc.contributor.advisorRajchgot, Jenna
dc.contributor.authorAtar, Busra
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2023-05-01T18:44:46Z
dc.date.available2023-05-01T18:44:46Z
dc.date.issued2023
dc.description.abstractA Hessenberg variety is a subvariety of the flag variety parametrized by two maps: a Hessenberg function on $[n]$ and a linear map on $\C^n$. We study regular nilpotent Hessenberg varieties in Lie type A by focusing on the Hessenberg function $h=(n-1,n,\ldots,n)$. We first state a formula for the $f^w_{n,1}$ which generates the local defining ideal $J_{w,h}$ for any $w\in\Ss_n$. Second, we prove that there exists a convenient monomial order so that $\lead(J_{w,h})$ is squarefree. As a consequence, we conclude that each codimension-1 regular nilpotent Hessenberg variety is locally Frobenius split (in positive characteristic).en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/28478
dc.language.isoenen_US
dc.subjectHessenberg varietyen_US
dc.subjectFrobenius splittingen_US
dc.subjectRegular nilpotenten_US
dc.subjectFlag varietyen_US
dc.titleHessenberg Patch Ideals of Codimension 1en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Atar_Busra_202304_MasterOfScienceThesis.pdf
Size:
411.94 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: