Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

A Diffusion Theory Model Of Spatially Resolved Fluorescence from Depth Dependent Fluorophore Concentrations

dc.contributor.advisorFarrell, Dr. T.J.
dc.contributor.authorHyde, Derek E.
dc.contributor.departmentMedical Physicsen_US
dc.date.accessioned2019-04-01T22:16:45Z
dc.date.available2019-04-01T22:16:45Z
dc.date.issued1999-09
dc.description.abstractPhotodynamic therapy (PDT) currently utilizes drug and light doses which are primarily based on clinical experience. This can lead to a dose which is not sufficient to destroy the entire tumor, or alternatively, it can lead to the undesirable destruction of healthy tissue around the treatment area. PDT of topically applied photosensitizers is one focus of this research. This concerns the diffusion of an externally applied drug into the tissue, as well as its subsequent destruction during the irradiation procedure. This work involves the non-invasive measurement of the inherent fluorescence of the photosensitizer, allowing the determination of the concentration and distribution of drug within the tissue, and thus optimizing this treatment. To do this, one must be able to describe the propagation of light within the tissue. Consequently, a photon diffusion model has been developed to calculate the steady-state spatially resolved fluorescence from a pencil beam excitation in a depth dependent medium. The validity of this model was then verified by comparison with Monte Carlo simulations and measurements made on phantoms with optical properties similar to those of human tissue. Theoretical conditions were then explored, and potential uses of the model were demonstrated.en_US
dc.description.degreeMaster of Science (MS)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/24203
dc.language.isoenen_US
dc.subjectdiffusion theory modelen_US
dc.subjectspatially resolved fluorescenceen_US
dc.subjectdepth dependent fluorophoreen_US
dc.subjectconcentrationsen_US
dc.titleA Diffusion Theory Model Of Spatially Resolved Fluorescence from Depth Dependent Fluorophore Concentrationsen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hyde_derek_e_1990sep_masters.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: