Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

IMMOBILIZATION AND CHARACTERIZATION OF FLEXIBLE DNAzyme-BASED BIOSENSORS FOR ON-THE SHELF FOOD MONITORING

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

While the Canadian food supply is among the healthiest in the world, almost 4 million (1 in 8) Canadians are affected by food-borne illnesses, resulting in 11,600 hospitalizations and 238 deaths per year. Microbial pathogens are one of the major causes of foodborne sicknesses that can grow in food before or following packaging. Food distribution is an important part of the food processing chain, in which food supplies are at a higher risk of contamination due to lack of proper monitoring. Among myriad of research around biosensors, current devices focusing on packaged food monitoring, such as leakage indicators or time temperature sensors are not efficient for real-time food monitoring without separating the sample from the stock. Packaged food such as meat and juice are directly in touch with the surface of their containers or covers. Therefore, real-time sensing mechanisms, installed inside the food packaging and capable of tracing the presence of pathogens, are of great interest to ensure food safety. This work involves developing thin, transparent, flexible and durable sensing surfaces using DNA biosensors, which report the presence of a target bacterium in food or water samples by generating a fluorescence signal that can be detected by simple fluorescence detecting devices. The covalently-attached DNA probes generate the signal upon contact with the target bacteria with as low as 103 CFU/mL of Escherichia coli in meat and apple juice. The fabricated sensing surfaces remained stable up to several days under varying pH conditions (pH 5 to 9). In addition to detecting pathogens on packaged food or drinking bottles, these surfaces have the potential to be used for a variety of other applications in health care settings, environmental monitoring, food production chain, and biomaterials like wound dressing.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By