Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9887
Title: Modeling. System Identification and Control of a Belt Drive System
Authors: Zhu, Shenjin
Advisor: Habibi, Saeid
Department: Mechanical Engineering
Keywords: Mechanical Engineering;Mechanical Engineering
Publication Date: Mar-2011
Abstract: <p>Belt drives have been serving the industry for a long period. Certain features of belt drives such as slippage, tension fluctuations, and sliding of the belt on the pulleys lead to highly nonlinear deformation, large rigid body motion, dynamical contact with sticking and slipping zones and cyclic tension. The performance of motion control for belt drives is important in many industrial fields and is affected by these factors. Advanced control can improve robustness of belt drive and result in a faster dynamic response and more accuracy. The Purpose of this project is to develop a mathematical model of an experimental belt drive system through physical modeling and system identification. This model is then used for the design of an advanced robust discrete-time controller. An extensive literature review is provided, covering modeling and control of belt drive system as well as sliding mode control (SMC) theory. Physical modeling is carried out for an experimental system followed by system identification. Both the physical and the identified models are used to analyze and investigate the characteristics of the system. Different control approaches such as discrete-time proportional integral derivative (DPID) and discrete-time sliding mode control (DSMC) are designed and implemented. The results are compared and conclusions are drawn from both control approaches.</p>
URI: http://hdl.handle.net/11375/9887
Identifier: opendissertations/4969
5987
2075404
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
59.16 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue