Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9514
Title: Automated Message Triage - A Proposal for Supervised Semantic Classification of Messages
Authors: Tavasoli, Amir
Advisor: Archer, Norman P.
Department: Computer Science
Keywords: Computer Sciences;Computer Sciences
Publication Date: Sep-2010
Abstract: <p>Classification or Categorization is a text mining technique in which the given text documents are classified into specified categories. There are several techniques for classifying messages, ranging from simple K Nearest Neighbours to complicated Support Vector Machines. These classifiers have proven to be effective in cases where the documents in each category do not have a great deal of overlap with other documents. Designing a classifier that is effective in environments where there is no way to avoid this overlap, like em ails, text messages, or user opinions and comments, has remained a continuing challenge. This work is a proposal for a system that classifies such documents based on their content so they can be sorted by semantic significance. This has several applications in the real world, like triaging patient messages to physicians in the healthcare field or sorting user opinions on a product webpage. We have combined and tailored different classifiers to build a high performance classifier that supports this type of classification. The system has been tested and proven to have good performance with real-world user messages that were exchanged between patients and physicians during a hypertension prevention study.</p>
URI: http://hdl.handle.net/11375/9514
Identifier: opendissertations/4630
5648
2051295
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.7 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue