
AUTOMATED MESSAGE TRIAGE

AUTOMATED MESSAGE TRIAGE:
A PROPOSAL

FOR
SUPERVISED SEMANTIC

CLASSIFICATION OF MESSAGES

By
AMIR TAVASOLI, B.Sc

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Science

McMaster University
© Copyright by Amir Tavasoli, September 2010

MASTER OF SCIENCE (2010)
(Computer Science)

McMaster University
Hamilton, Ontario

TITLE: Automated Message Triage - A Proposal for Supervised
Semantic Classification of Messages

AUTHOR: Amir TavasolC B.Sc

SUPERVISOR: Norm Archer, Ph.D., Professor Emeritus

NUMBER OF PAGES: xi, 127

ii

-- -----------

Abstract
Classification or Categorization is a text mining technique in which the given
text documents are classified into specified categories. There are several
techniques for classifying messages, ranging from simple K Nearest
Neighbors to complicated Support Vector Machines. These classifiers have
proven to be effective in cases where the documents in each category do not
have a great deal of overlap with other documents. Designing a classifier that
is effective in environments where there is no way to avoid this overlap, like
em ails, text messages, or user opinions and comments, has remained a
continuing challenge. This work is a proposal for a system that classifies such
documents based on their content so they can be sorted by semantic
significance. This has several applications in the real world, like triaging
patient messages to physicians in the healthcare field or sorting user
opinions on a product webpage. We have combined and tailored different
classifiers to build a high performance classifier that supports this type of
classification. The system has been tested and proven to have good
performance with real-world user messages that were exchanged between
patients and physicians during a hypertension prevention study.

iii

Dedicated to my parents, Fatemeh Khosh and Eskandar
Tavasoli

iv

Acknowledgments
The last two years have been the most challenging and yet amazing years of
my life. I have experienced great experiences, found great friends and
overcome several challenges. Overcoming these challenges would have been
impossible without the help of my family, friends and colleagues. I would like
to express my gratitude towards the following people for their great support.

I have to admit that without the support of my supervisor, Dr Norm Archer, it
would have been impossible for me to accomplish my goals. I have always
been motivated by his interest and energy in his teaching and research, and
his absolute desire to share his wealth of knowledge with his students and
colleagues and helping other human beings. I should say he is not only a great
supervisor but also a marvelous human being. I feel really lucky and have
learned great lessons in life because of being his student. His support and
assistance and his dedication to gUiding me during the past two years is
greatly admired and appreciated.

I would also like to acknowledge my deep appreciation to my family who
dedicated their lives to helping me, and it is impossible for me to compensate
for what they have done for me. I am really thankful to have grown up in such
a loving and supportive environment. A very special thanks to my true and
beloved friends, who now live in the four corners of the world, and whose
support and kindness have contributed greatly to my life's journey;
specifically Samaneh Gheibi, Mohammad H. Koleini, Farbod Riahy, Afshin and
Ramin Khezri, M. Reza Heydarian and Sepandar Sepehr.

I would like to express my acknowledgment to myBP Trial Team in
Department of Family Medicine at McMaster University; specifically Dr.
David Chan, Christine Rodriguez, and Lisa Dolovich. Their kind support in
making the messages available and help in triaging the data is greatly
appereciated.

I would also like to express my thanks to the Alias-i Company for developing
the free open-source text mining product, LingPipe. Their sharing of the code
and development details of this product is very much appreciated and has
contributed greatly to this and many other works.

v

-- ---------------------------

Table of Contents

ABSTRACT .. 111 .. .

ACKNOWLEDGMENTS .. V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

GLOSSARy .. X

1. INTRODUCTION ... 1

2. REVIEW OF THE LITERATURE AND RESEARCH .. 4

2.1 TEXT MINING .. 4

2.1.1 Text Mining Steps ... 5
2.1.1.1 Tokenization ... 5
2.1.1.2 Feature Reduction or Selection ... 6
2.1.1.3 Document Classification .. 9

2.1.1.3.1 K Nearest Neighbor ... 9
2.1.1.3.2 NaIve Bayes Classifier ... 10
2.1.1.3-.3 Regression Methods .. 11
2.1.1.3.4 Neural Networks ... 11
2.1.1.3.5 Support Vector Machines .. 11
2.1.1.3.6 Decision Tree Classifiers .. 12
2.1.1.3.7 Bayesian Network Classifier .. 12
2.1.1.3.8 Decision Rule Classifier .. 13

2.1.1.4 Multiple Classification Combination ... 13
2.1.1.5 Classifier Performance ... 16

2.2 SIMILAR SySTEMS .. 17
2.3 ApPLICATIONS .. 19

2.3.1 eHealth ... 19
2.3.2 Opinion Mining ... 21

3. AUTOMATED MESSAGE TRIAGE (AMT) SYSTEM ... 23

3.1 EHEALTH AS THE MAIN ApPLICATION ... 24

4. UNDER THE HOOD ... 26

4.1 DATA GATHERING AND PREPARATION ... 26

4.1.1 MyBP STUDy .. 26
4.1.2 EXCHANGED MESSAGES .. 28
4.1.3 DATA CLEANING .. 29

4.2. CLASSIFICATION ... 33

4.2.1 CLASSIFIERS TESTED ... 35
4.2.1.1 Language Model (LM) Classifier ... 36
4.2.1.2 Indo-European Tokenizer .. 37
4.2.1.3 Naive Bayes Classifier .. 38

vi

4.2.1.4 K Nearest Neighbor (Knn) Classifier ... 39
4.2.1.5 TF-IDF Classifier ... 41

4.2.2 COMBINING CLASSIFIERS .. 43
4.2.2.1 Training Multiple Classifiers ... 43
4.2.2.2 Simple Voting ... " 44
4.2.2.3 Dynamic Classifier Selection ... 46
4.2.2.4 Adaptive Classifier Combination ... 46
4.2.2.5 New Proposed Combination Method ... 47

4.2.3 COMPARISON OF CLASSIFICATION METHODS ... 48
4.2.3.1 Benchmark Conditions .. 49
4.2.3.2 Classifier Confusion Matrices and Test Parameters ... 49

4.2.3.2.1 Language Model (LM) Classifier ... 49
4.2.3.2.2 Naive Bayes Classifier ... 51
4.2.3.2.3 K Nearest Neighbor (Knn) Classifier .. 51
4.2.3.2.4 TF-IDF Classifier .. 53
4.2.3.2.5 Simple Voting Classifier ... 53
4.2.3.2.6 Dynamic Classifier Selection .. 54
4.2.3.2.7 Adaptive Classifier Combination .. 55
4.2.3.2.8 New Adaptive Classifier Combination ... 57

4.2.3.3 Choosing the best method .. 59

4.3 CONNECTING THE DOTS .. 60

5. FUTURE WORK .. 61

BIBLIOGRAPHY ... 63

APPENDICES ... 70

ApPENDIX I .. 70
ApPENDIX II .. 72
ApPENDIX III ... 74
ApPENDIX IV ... 79
ApPENDIX V ... 91
ApPENDIX VI .. 125

vii

List of Tables
Table 1 - Spreadsheet Representation of Text Documents [3J 6
Table 2 - Thresholding Frequencies to Three Values-" 6
Table 3 - Decision Tree Structure [1 OJ .. 12
Table 4 - Patient Characteristics Table [81J ... 27
Table 5 - MyBP Patient Message Categories ... 30
Table 6 - Triage Level Details .. 31
Table 7 - Number of Messages by Triage Level ... 32
Table 8 - Classifiers Used in This Work ... 36
Table 9 - Indo-European Tokenizer Tokens [93J .. 37
Table 10 - Language Model (LM) Confusion Matrix (n-gram size = 7) 50
Table 11 - NaiVe Bayes Confusion Matrix .. 51
Table 12 - Effects of DistanceFunction on Knn Classifier .. 52
Table 13 - Knn Confusion Matrix (k=2, Euclidean Distance) 52
Table 14 - TF-IDF Confusion Matrix .. 53
Table 15 - Simple Voting Classifier Confusion Matrix ... 54
Table 16 - Different Distance Functions for Calculating DCS Neighborhoods

(with k=4) ... 55
Table 17 - Dynamic Classifier Selection (DeS) Confusion Matrix (k=4 and

Euclidean Distance) .. 55
Table 18 - Different Distance Functions for Calculating ACC Neighborhoods

(k=4) .. 56
Table 19 - Adaptive Classifier Selection (ACC) Confusion Matrix (k=4, Cosine

Distance Measure) ... 57
Table 20 - New Adaptive Classifier Combination Confusion Matrix (k=9) 58
Table 21 - Classifier Comparison .. 59
Table 22 - Resolving Differences Between Message Triage Levels Chosen by Two

Nurses ... 85
Table 23 - Messages Simulated to Overcome Lack of Level 0 and Levell

Messages .. 90

viii

List of Figures
Figure 1 - Classification Process [3} ... 9
Figure 2 - Selection Modelfor Multiple Classifiers (adaptedfrom [60)) 14
Figure 3 - Combination Modelfor Multiple Classifiers [60} 15
Figure 4 - Newsblaster Customized News About Sports ... 18
Figure 5 - Screen Capture from Mozilla Thunderbird Spam Guard 19
Figure 6 -A Screenshotofthe myOSCAR Personal Health Record System 20
Figure 7 -Automated Message Triage System .. 23
Figure 8 - myBP Study Phases [81} ... 26
Figure 9 - myBP Messaging System [81} ... 28
Figure 10 - Steps in Data Preparation ... 33
Figure 11 - Text Categorization: Training a Model and Classifying a New

Document [1} ... 34
Figure 12 - Classification Process of Naive Bayes Classifier [1} 39
Figure 13 - Knn Classifier [1} ... 40
Figure 14 - TF-IDF Classifier Classification Process [1} .. .42
Figure 15 - Simple Voting Classifier Combination with Modification45
Figure 16 - n-gram Size for LM Classifier Performance ... 50
Figure 17 _ k Size to Knn Classifier Performance .. 51
Figure 18 - k Dynamic Classifier Selection (DCS) Classifier Performance 54
Figure 19 - k Size to Adaptive Classifier Combination Classifier (ACC)

Performance ... 56
Figure 20 - k Size to New Adaptive Classifier Combination Classifier

Performance ... 57
Figure 21 - Automated Message Triage Overall Design ... 60
Figure 22 - GA TE Opening Screen ... 74
Figure 23 - GATE with Document Corpus .. 75
Figure 24 - Running ANNIE in GATE ... 76
Figure 25 - GATE Finding Private Information ... 77

ix

--- - - ---------------------

Glossary
ACC: Adaptive Classifier Combination - method for combining classifiers.

AMT: Automated Message Triage - the system proposed in this work.

ANNIE: A Nearly-New Information Extraction System - a component for
extracting information - for instance tagging data in GATE.

API: Application Programming Interface - an interface that is provided by a
software package in order to interrelate with other software applications.

Cerr: Critical Error - a type of error defined in 4.2.3 Comparison of
Classification Methods.

DAG: Directed Acyclic Graph - type of graph that has no cycles.

DBP: Diastolic Blood Pressure - minimum blood pressure.

DCS: Dynamic Classifier Selection - method for combining classifiers.

DNF: Disjunctive Normal Form - form oflogical formula which consists of
disjunction of conjunctive logical clauses.

EMR: Electronic Medical Record system - an EMR system that assists
healthcare professionals in managing health related information
electronically.

ePHR: electronic Patient Health Record system - a system that lets patients
update, access, and control their health information online.

erate: Error Rate - a type of error

GA: Genetic Algorithm - a machine-learning algorithm.

GATE: General Architecture for Text Engineering - a text mining application
developed at the University of Sheffield in England.

IR: Information Retrieval

KDD: Knowledge Discovery from Data - a synonym for Data Mining.

x

Knn Classifier: K nearest neighbor Classifier - a classifier used for
categorizing text documents.

LM Classifier: Language Model ~~assifier - a classifier that is used in text
mining.

myBP: a study that was conducted by the Family Medicine Department at
McMaster University to measure the effects when hypertension patients used
an ePHR to help manage their illness.

myOSCAR: an ePHR developed by the Family Medicine Department at
McMaster University.

NN: Neural Network - a machine learning method.

OSCAR: Open Source Clinical Applications & Resources - an EMR system that
was developed by the Family Medicine Department at McMaster University.

RSS: Really Simple Syndication - xml-based web news feeds.

SBP: Systolic Blood Pressure - maximum blood pressure.

SE: Standard Error - a type of error.

SVM: Support Vector Machine - a machine learning method.

TF-IDF: Term Frequency - Inverse Document Frequency - a very useful
method that is used in text mining and is described in 2.1.1.2 Feature
Reduction or Selection.

WEKA: Waikato Environment for Knowledge Analysis - a text mining
application that was developed by the Department of Computer Science in
University ofWaikato in New Zealand.

xi

Master's Thesis - A. Tavasoli McMaster - Computer Science

1. Introduction

The introduction of the World Wide Web not only gave rise to a new era in
mankind's history; it very quickly resulted in several new challenges. One of
the most important was an explosion of information generally available
online to everyone with access to the Web [1]. To overcome this challenge,
techniques known as knowledge discovery or data mining have emerged [2].
A major issue with this vast ocean of information is its unorganized nature.
Organizing this gigantic amount of information would be difficult, time
consuming, and probably an impossible obstacle to overcome. One approach
to this problem is text mining [3] which goes one step further, claiming to be
able to obtain desired knowledge from the Web without first organizing it.
This has resulted in a Significant amount of attention to research in text
mining, and a major trend in the use ofthis innovative approach [1].

A need to have a system that is able to sort text documents
semantically can be found in several areas, ranging from healthcare to
opinion mining [4]. With such a system, example applications include:
sorting messages sent to a medical doctor, based on their significance;
sorting reviews left by users on a product webpage, based on how favorable
the reviews are; sorting office emails based on their importance or urgency;
or sorting comments in a blog based on how interesting the comments are.
This research work is an attempt to tackle the semantic sorting of text
documents, using an innovative approach to text mining.

The inspiration for this work came mainly from the healthcare arena
and the application of electronic Personal Health Record (ePHR) systems. An
ePHR system is a system that enables patients to access and manage their
own health information online. Studies have suggested that the use of ePHRs
has a positive effect on patient doctor-patient communication [5]. Most ePHR
systems provide a method for patients and physicians to communicate with
each other through secure messaging [6]. When an ongoing connection
between patient and physician is provided, this changes encounters from
episodic to continuous, and reduces the time needed to address problems
that may arise. Unfortunately, this increased rate of communication can
increase workloads on already overloaded physicians, resulting in an
insuperable barrier to the use of this potentially valuable tool. We were
inspired to look at this problem by the potential of semantically triaged
messages, especially in regions that lack ready access to healthcare
professionals, such as developing countries [7].

1

Master's Thesis - A. Tavasoli McMaster - Computer Science

There are several techniques that can be used in text mining to
manage this challenge, ranging from handcrafted to machine learning
methods. Due to the complex nature of the healthcare environment,
predictive machine learning methods are the best suited to mining
unstructured information [3]. In addition, because of the sensitive nature of
messages relating to medical care, a high level of precision is needed to
ensure that false negative handling of incoming urgent messages is virtually
eliminated. To reach this level of precision, this research included the
selection and use of certain text mining methods that have been especially
tweaked to fit in this environment until they demonstrated robust
performance. Obviously these tweaks can be generalized and are useful in
any environment where semantic triage of text documents is required.

To simulate a real word situation and ensure optimal performance of
our system we used a test bank of real world messages from patients and
caregivers that were exchanged in the myBP trial. MyBP was a project
undertaken recently by the McMaster Department of Family Medicine that
was designed specifically to examine the effects of using an ePHR on patient
self management of hypertension. In this trial an adaptation of myOSCAR , a
secure open-source ePHR system that was developed at McMaster University
[8], was used to help monitor and manage patients with hypertension.
During the trial, experienced professionals managed all incoming messages
from patients through a triage process. In our research we examined the use
of text mining approaches to automate the triage process so that less urgent
messages could be handled automatically while ensuring that truly urgent
messages are forwarded to on-call professionals for rapid response. This
automated triage process can result in a reduction in the workload on
professionals supporting self management of healthcare. Moreover there
are many other potential applications of automated message triage, some of
which have already been mentioned.

To deveiop and test techniques for automated triage, the system that
was designed was trained with part of a test bank of existing messages, and
then tested before actual use with the remainder of the test bank to ensure
reliability. The test messages were each assigned a priority level in advance
by a triage professional, in order to test the ability of the automated system
to properly classify the test messages. Before using the myBP messages, they
were completely anonymized by deleting their headers and any other
personal identifying information remaining in the text, to ensure the privacy
of patients and healthcare professionals. This work was approved by the
McMaster Research Ethics Board.

2

Master's Thesis - A. Tavasoli McMaster - Computer Science

The automated system can also be used to triage text messages that
are sent from patient's cell phones. It can also be generalized such that it will
be able to respond to certain classes of simple messages (e.g. requests for

--background information) that are delivered to the system. By managing less
important or urgent messages, this reduces the communication burden on
health professionals. Future research could be done that would continue
developing better performance and precision from the system. This system,
given the name Automated Message Triage (AMT) system has shown good
performance in the healthcare field where the messages are short and there
is significant overlap between message triage levels. The adaptation of AMT
to other less critical environments such as blogs or product reviews appears
to have much future promise.

3

Master's Thesis - A. Tavasoli McMaster - Computer Science

2. Review of the Literature and Research

2.1 Text Mining
Due to rapid growth in the amount of online information in recent years,
especially after the emergence of the Web, as the father of Information
Retrieval (IR) Gerald Salton predicted, we are being forced to mine the
information that we need out of the huge amount of information available
[1]. Data Mining, which is "extracting or mining knowledge from large
amounts of data ", has received a great deal of attention in recent years due to
the changes described [2]. Actually the term "data mining" is a slight
misnomer because we often refer to extracting metal ore from rock as metal
mining and not rock mining. However, because of length of the term
"knowledge mining from data" and the loss of emphasis on the large
proportions of data in term "knowledge mining", the term "data mining" has
become common in the literature and in industry [2]. Another synonym for
the term Data Mining is Knowledge Discovery from Data or KDD which is also
commonly used [2]. Here, the word "knowledge" means an interesting
pattern in a domain of relevance [9].

Data mining almost always requires highly structured data, which
takes an enormous effort to prepare [3]. Moreover, there are some cases
where we need to make real time decisions based on new data, and there is
no time to prepare the data for the process. This is the case in Web searches
or guarding against spam, etc. Our interest in this research is in Text Mining,
the process of extracting interesting patterns from document collections [10].

Here are the main problems that can be solved using text mining:
1 - Document Classification
This is also known as text categorization, and is the most common use of text
mining. The problem to be solved is: given a set of categories, classes or
subjects, then automatically decide to which class a new document belongs
[10]. This problem is the main focus of this thesis.

2 - Information Retrieval
This is also known as information extraction. Information retrieval can be
done in several ways. One of the most common is to, when given a query,
search through a big corpus of documents and find the documents that match
the given query. This method is used every day in Web search engines [3].
Another approach is tagging documents and finding useful information in
them, such as entities, attributes, facts or events. For instance, this can result

4

Master's Thesis - A. Tavasoli McMaster - Computer Science

in finding names, the size of peoples' feet, the names of a company's
employees, names of persons who were involved in a car accident in a given
corpus of text documents, etc. [10]. This approach is widely used for different
purposes, from stock market prediction to tracking criminal actions on the
Web. It can be done using GATE software (mentioned in the following
chapters) [11]. The information extracted from a large corpus of text
documents can be shown visually with various methods to make the results
readily understandable [10].

3 - Clustering and Organizing Documents
The objective here is to automatically find the categories (classes or subjects)
in an unstructured corpus of documents. Each category should contain
similar documents and these are determined by the data itself [3]. Clustering
is typically used for data analysis in pattern recognition, image segmentation,
etc. [10]

2.1.1 Text Mining Steps

Text mining steps are quite analogous to data mining steps, but in text
mining we need to take the highly unstructured nature of our environment
into consideration [3]. Each of the applications mentioned has specialized
steps. For example, steps that are needed for visualizing information are
different from steps taken in clustering. In the following we describe the
steps needed in document classification.

2.1.1.1 Tokenization

The initial procedure is converting the text data into a format that is
understandable for the mining process, which requires numerical data. The
first issue is to convert character sequences into words or (in other words)
tokens. To do so requires an awareness of the language structure, because
certain characters are sometimes token delimiters and sometimes they have
other uses. For instance, a period can be part of an email address or the
ending of an sentence. There are good precise algorithms for tokenizing
English language text [3].

Data Representation
After reading tokens, a good representation is needed that can be saved
easily in a data structure for storing or processing in main memory. One of
the most common data models used is called the Spreadsheet Model. An
example of a spreadsheet that can represent a text document (see Table 1), is
a record of the word frequencies in a set of documents [3].

5

Master's Thesis - A. Tavasoli McMaster - Computer Science

CN Tower Celebration Toronto
Document 1 1 0 5
Document 2 0 2 1
Document 3 1 0 1
Document 4 2 4 0

Table 1 - Spreadsheet Representation of Text Documents [3J

This representation has been used in [12-17] according to [18]. There
is another representation of a document, in which a Boolean spreadsheet is
used only to record whether or not a word appears in a document. This
approach has been used in [17, 19-22] according to [18]. There are some
combinations of methods like representing 'Thresholding Frequencies'. For a
Thresholding Frequency with three values for example, we use 0, 1 and 2
numbers in a spreadsheet according to the pattern in Table 2. This scheme
has the benefit of greater performance when recording frequencies [3].

Number When to use
0 Document does not contain the word
1 The word occurred only one time
2 The word occurred more than one time

Table 2 - Threshol~ing Frequencies to Three Values

Another method of data representation is to use certain additional
information in building a spreadsheet [18]. One well-known method is the
use of n-grams, which are sequences of n words (or characters) instead of
one word. In this method groups of words (or characters) that occur
frequently (e.g. 'United States of America1 can be treated as one word, thus
reducing the number of features. There is a good algorithm for doing this
[18,23]. This method is also known as a multiword feature [3].

All the data representations mentioned so far are known as 'bag-of
words' models. Another method that can be used in to build a spreadsheet
would be the word position in the text, resulting in a model that is not a bag
of words [18,20].

2.1.1.2 Feature Reduction or Selection

After identifying tokens in the text, it is better to reduce the number of tokens
and keep only the significant and relevant tokens in most cases. This
technique is called feature reduction. Another technique is feature selection,
which is recoding all the features and selecting only the related ones in the

6

Master's Thesis - A. Tavasoli McMaster - Computer Science

final vector, which is the vector that is made from set of features and used for
classification. The approach selected is based on the situation. Feature
reduction or selection has been proven to have a positive effect on most
classification results, due to the omission of unwanted or insignificant
features [3] i.e. dimensions of our final vector. There are several widely used
methods for feature reduction, as follows.

One simple and common feature reduction method is lemmatization
or stemming. In lemmatization all the words of the same type are considered
as one entry. These words can be words of the same root, words that are
synonyms of each other, etc. so they are all considered to be one entry [3].
Another very common approach for reducing features is removing stop
words like a, it, and, etc. from the list of features [3].

Another method for reducing the number of features is to remove
words that are the most frequent. But just removing the words that are most
frequent can be risky in most cases because these words can be rare in other
documents, making the words valuable. To overcome this deficiency
different methods have been suggested, with a well-known one being TF-IDF
which stands for Term Frequency - Inverse Document Frequency. In the TF
IDF method each token is assigned a weight, which is calculated as:

weight(token) = tf(token) * idf(token)
tf(token) = token frequency in the document

idf(token) = log(N)
df(token)

df(token) = number of documents the word is used in
N = total number of documents

In TF-IDF words are weighted based on their importance, so the only
words chosen are the words that have greater importance (thus greater
weight.) There are different versions of TF-IDF; for instance, weighting
different words from different parts of a document differently or havfng
different weights for different categories [3] [24]. Salton and Buckley
describe several alternative versions ofTF-IDF and their usage [25]. Another
interesting alternative version of TF-IDF has been mentioned in [18, 26],
where tokens are weighted using "mutual information between word
occurrence and class value".

Other than the TF-IDF weighting scheme, there are certain other
weighting algorithms that can be used to reduce the number of features. For
example, the X2 measure which calculates the dependence between the

7

Master's Thesis - A. Tavasoli McMaster - Computer Science

feature and the class, has proven to be very effective in dimension reduction
of vectors [10, 27]. H. Schutze and et al. recommend using a best-term X2

measure that is calculated locally [26, 28, 29]. Another weighting scheme is
known as Information Gain (IG). For each token a probability measure called
IG is calculated. This represents the information gathered from a prediction
of its lack or occurrence in the document containing the token in this
category [10].

Machine Learning algorithms can also be used in feature selection.
Lutu and Engelbrecht suggest using heuristic search for finding highly related
features in a document [30]. There are several other described in a patent by
Weston et al [31]. There are several feature selection algorithms that are
mostly used in image recognition but can be generalized for text feature sets.
Good examples are sequential forward floating selection (SFFS) or "plus 1-
take away r" selection methods [26,32].

Another way to reduce the number of features in the final vector is to
map it into a more useful lower dimension. A linear projection method can be
used to mirror the vector into a vector combination from the first vector. This
method is known as feature extraction [26]. Related multiword groups can be
addressed using the n-gram data model, or words can be grouped that are
semantically related, using supervised or unsupervised clustering. Using
these word groups can mirror the current vector to a vector with a lower
dimension [10].

Research has also shown that using background information of the
categories can result in certain improvements [10, 33, 34]. On the other
hand, unsupervised learning has proven to have weak results [10,26,35,36].

Another approach to feature extraction is latent semantic indexing
(LSI). LSI uses Singular Value Decomposition (SVD) to find relationships
between tokens in the document. The dimensions of a data model
spreadsheet generated using the SVD principie will be reduced. Research has
shown that, like the previous case using background information, this can
produce some improvements in categorization [10].

Having completed tokenization and feature reduction or selection, the
document is ready to be processed. The methods used for classification will
be covered in the following.

8

Master's Thesis - A. Tavasoli McMaster - Computer Science

2.1.1.3 Document Classification

Classifying documents requires as an input the document features. The
classification process requires that the classifier be trained to recognize pre
defined categories so it can predict to which category an unknown (or new)
document belongs [3].

Figure 1 - Classification Process [3]

The following is a brief description of some well-known classification
algorithms and some of their interesting alternatives.

2.1.1.3.1 K Nearest Neighbor

K Nearest Neighbor methods are based on similarities beuveen documents.
In the training phase it is necessary only to save the training vectors and to
which category they belong. Analyzing a new document involves finding its k
nearest neighbors. The result is a prediction that the document belongs to
the most frequent category it shares with its neighbors. A similarity measure
is used to find the document's k nearest neighbors. The most common
neighbor similarity measure is Euclidian Distance bet:\J\Teen vectors [3]. Other
similarity measures include Cosine Distance between vectors or the angle

9

Master's Thesis - A. Tavasoli McMaster - Computer Science

between two vectors 1 which Qian, Sural and et al have proven to be no worse
than the Euclidian Distance measure [37]. Another interesting distance
measure is Taxicab Distance, which is the distance between vectors
measured with Taxicab Geometry. The Taxicab Distance is a projection of the
distance on line segments between the two vectors i.e. tithe way that a
Taxicab would drive between two points" [38]. Taxicab Distance is also
known as Manhattan Distance, City Block Distance, and 4 Norm Distance

[39]. Suppose Q=(qpq2, ... ,qJ is a vector of numerical features and

V = (VI' v2 , ... , VII) is also a vector composed of numerical features. Then the

taxicab distance between these vectors is calculated as:

dtaxicab(Q, V) = 'Llqi -vii
i

Another interesting similarity measure is Minkowski Distance, which
is the generalized version of the Euclidian Distance [39]. The Minkowski
Distance is calculated as follows:

P in the equation for Minkowski Distance is known as the order of the
Minkowski Distance. For instance if p=2 then Minkowski Distance will be the
same as Euclidean Distance.

Different orders of Minkowski Distance have been proven to have
good performance in document classification [40].

2.1.1.3.2 Nai've Bayes Classifier

The NaIve Bayes Classifier is based on Bayes' theorem of probability. Given a
new document the probability of this document belonging to a certain
category is calculated using Bayes' theorem. For each class we calculate the
probability that document d belongs to class c [10].

Pr(e I d) = Pr(d I e).Pr(e)
Pr(d)

Pr(d) is a constant so this is not calculated. However for Pr(dle) it is
necessary to assume that tokens in document d are independent [10].

10

Master's Thesis - A. Tavasoli McMaster - Computer Science

Pr(d I c) = II Pr(tokeni I c)
i

Because of this weak assumption, this method is known as NaIve
Bayes [10]. Interestingly enough this "naIve" assumption is known to
perform robustly [41, 42].

2.1.1.3.3 Regression Methods

Regression is a statistical method used for predicting new values of a
function from its known values. Regression models can be used for text
classification. Yang and Chute suggested using the linear least-squares fit
(LLSF) in text classification [10, 43]. Another regression categorization
method that has performed well is Bayesian Logistic Regression [44].

2.1.1.3.4 Neural Networks

Neural Networks (NN) can also be used to perform text categorization. The
first step is designing an NN that can be trained using data from known
documents and their classification, and then to use the trained network to
classify new documents. For text classification mostly feed-forward back
propagation neural networks are used, in which weights are determined by
propagating error through the networks [10]. Studies of these types of
networks have shown that a perceptron (one-layer neural network)
performs as well as NNs with more layers (Le. hidden layers) [10, 45, 46].
However, combining multiple neural networks in a hierarchical structure,
(hierarchical neural networks), has been shown to be very effective [47].

2.1.1.3.5 Support Vector Machines

A Binary Support Vector Machine is simply an optimal hyper-plane in feature
space, a high dimensional vector space which separates vectors that belong
to a category and those that do not belong to that category. These binary
support vector machines find a certain hyper-plane by using a small number
of instances called Support Vectors, while the rest of the training instances
are mostly neglected [10]. Huang and Wang suggest using Genetic Algorithms
(GA) for finding parameters of SVM in order to increase performance [48].
They also recommend using a fuzzy SVM for multiclass classification [49].

11

Master's Thesis - A. Tavasoli McMaster - Computer Science

2.1.1 .• 3.6 Decision Tree Classifiers

A Decision Tree is a tree which has a structure as outlined in Table 3.

Node Type Representatioii
Internal nodes Features
Edges between nodes Features weight
Leaves Classes

Table 3 - Decision Tree Structure [10]

For classifying a document, this process starts from the root and
chooses the edge that satisfies the given document condition, continuing on
in this manner until a leaf is reached. The document is classified according to
the final leafs label. Most Decision Tree classifiers are used for binary
classifications, and are therefore binary trees [10].

There are several algorithms for Decision Tree learning. However,
most of them (e.g. ID3, C4.5, C5 [26] and CART) follow a recursive procedure,
which picks a feature and divides the training samples into those that have
that feature and those that do not, until a leaf is reached. The final step occurs
when the training sample contains only one class. Choosing the right feature
to continue is mostly done through a measure like information gain. One of
the disadvantages of decision trees is that they can overfit to a certain
category, so most of these algorithms use pruning methods to avoid
overfitting. The main advantage of using decision trees is that they are
readable by humans [10].

2.1.1.3.7 Bayesian Network Classifier

Bayesian Networks are well-known statistical structures. They are Directed
Acyclic Graphs (DAG) that are labeled with probability potentials. Each node
in a tree represents a feature, and edges represent their conditional
probabilities [50]. When given a new document, the algorithm uses the
Bayes chain rule to calculate the probability that the document belongs to a
certain category.

There are several learning algorithms for Bayesian Networks, which
use complex statistical approaches to build the graphs and assign
probabilities to them [50]. Klopotek and Woch suggest that tree-like
Bayesian Networks perform well in large vector spaces [51]. Sanchez-Graillet
and Poesio suggest a new method for building a Bayesian Network from text.
It finds the causal relationship between words (tokens) in a text document

12

Master's Thesis - A. Tavasoli McMaster - Computer Science

[52]. Sandeep [53] presents some very good work on the use of Bayesian
Networks in text mining.

2.1.1.3.8 Decision Rule Classifier

Decision Rules are simple Disjunctive Normal Form (DNF)-like rules that are
built from a document using inductive rule learning. If a document has n
features, each represented by d i that belong to class c, the first step is making
the initial rule:

The next steps involve optimizing these base rules, followed by
pruning to avoid overfitting the rules [10]. One interesting rule-based
classifier system is RIPPER, which stands for "Repeated Incremental Pruning
to Produce Error Reduction". Ripper has an interesting capability to improve
performance towards either precision or recall [10, 20, 54, 55].

2.1.1.4 Multiple Classification Combination

As in the real world where a committee of experts can usually make better
decisions than just a single person, a combination of classifiers has the
potential for better precision than just one classifier. There are several
methods for combining classifiers. Most of these methods require that the
classifiers that are used differ significantly either in their data representation
or in their learning methods [10].

There are two general approaches to classifier combination. The first
method is bagging. In bagging, each classifier learns its way through the
training data separately and in the end the classifier results get combined.
The second way is boosting. In boosting, each classifier that learns from the
training data reweights the training data and makes it ready for the next
classifier to get trained using these revised weights [10]. Our work is focused
on the use of the bagging method so bagging methods are reviewed
extensively below.

The first and most obvious way to operate a bagging classifier is
through voting. In this method the new document is classified to the group
for which most classifiers voted [26]. There are variations to this method that
classify the document to a certain class when more than half of the classifiers
have voted that way [10]. Hansen and Salamon claimed that simple voting

13

Master's Thesis - A. Tavasoli McMaster - Computer Science

can be very effective in certain situations [56, 57]. Another approach is to
use a linear combination of classifier in which we assign a weight to each
classifier and weight the results using a linear equation. The final decision is
to choose either the best one or choose the best category based on that
equation [10].

Another method for combining classifiers is selecting the best
classifiers among the set of classifiers. This method is known as Selection,
and is demonstrated in general in Figure 2. A well known selection algorithm
is Dynamic Classifier Selection (DCS). Using DCS the k-nearest-neighbors of
the given new document are used to determine which classifier does a better
job in that local neighborhood and that classifier is then chosen to classify the
given document [26]. As mentioned in 2.1.1.3.1 there are several ways for
finding a neighborhood, so this method varies when different neighborhood
methods are used. Another variation for DCS is that we can weight a
neighborhood using cosine similarity [26, 56]. Giacinto and Roli represent a
"theoretical framework for DCS" [58]. They also represent two variations for
DCS. The first one is called "a priori selection" in which a portion of training
data called the "validation data" is used to find the local neighborhood. This
part of the data is extracted from training data and is not used for training.
Another interesting variation which they propose is "a posteriori selection"
in which the new document is classified before doing the selection and the
results are used to find an appropriate neighborhood [58]. DCS has proven
to have good performance in image classification [59]. Adaptive Classifier
Selection is another appealing variation of DCS for combining classifiers. In
this method, after the first step the classifiers that have a low certainty in the
neighborhood of the new document are removed. In the second step the
classifier in which there is the greatest certainty is chosen [56].

Input
FeatufB

8elec!ion

Classify with
Selected

C!assifferi

Output

Figure 2 - Selection MacIel/or Multiple Classifiers (adapted/rom [60])

14

Master's Thesis - A Tavasoli McMaster - Computer Science

Another approach for combining classifiers is called Combination,
demonstrated in general in Figure 3. This involves selecting the best
category for the new document based on the set of classifier results. A very
strong method for Combination is known as Adaptive Classifier Combination
(ACC). The first step in ACC is to find the neighborhood to which the given
document belongs. The second step is finding the set of classes that the
neighbors belong to. Then the local probability of each member of that set is
found, in order to locate the class as the best representation for that
neighborhood. That class is then the final choice [26]. ACC has proven to
perform well and smoothly [26]. In the current research we obtained good
results using ACC in a situation where even the classifier results were not
very divergent. This further proves the strength of this technique.

Larkey and Croft suggest another interesting ranking combination
algorithm for text documents in which the rank of each category is calculated
using a scoring algorithm based on the combinational score of the k nearest
neighbor algorithm and some other algorithm. The document is then
categorized into the category with the highest score. They claim that this
classifier works well [61]. Another interesting combination algorithm is due
to the work by Zhang, Cheng and Ma. They suggest using a self-adaptive
weighting combination method to combine classifiers using the weights [60].

Input

Figllre 3· Combination Model for Mllltiple ClaSSifiers [60J

There are other combination methods like behavioral based selection
[62] or combination [63], in which a combination is based on the behavior of
classifiers for different categories. Yet another method involves using

15

Master's Thesis - A. Tavasoli McMaster - Computer Science

maximum entropy to combine classifiers [60, 64]. One final technique is
adaBoost, a boosting algorithm which uses an SVM-like concept to boost
mUltiple classifiers [10].

2.1.1.5 Classifier Performance

Statistical measures are needed to compare classifiers. One measure is error
rate, which is helpful since the intent of the study is to find the lowest
possible classification error rates. Two error rate functions are [3]:
Error rate [3]:

number _of _errors
erate = -------=----

number _ of _ documents

Standard Error [3]:

SE=
erate x (1- erate)

number _ of _ documents

Obviously these measures are too general and better measures are
needed to evaluate text mining applications. Three ratios have been found to
be very effective in analyzing text mining classifiers; precision, recall and F
measure [3].

Precision [3]:
. . num_of _correct _positive_predictions

preclswn=
num _ of _ positive _ predictions

Recall [3]:

II
num - of _ correct _ positive _ predictions reca = __ ---=-____ -'0.-__ --" ___ _

num_of _positive_class_documents

F-measure [3]:

F= 2
precsion-1 + recaU-1

16

Master's Thesis - A. Tavasoli McMaster - Computer Science

Here, Precision is the percentage of documents that are correctly
categorized. Recall is the percentage of all documents that are recognized for
a certain category relative to all the documents in that category. The F
measure is the "harmonic mean of precision and recall" [3]. The F-measure is
useful especially for Ciassifiers that can change their precision or recall when
parameters are adjusted; therefore the harmonic mean of these two ratios is
the appropriate representation for classifier performance [10]. A very
extensive evaluation method for comparing different classifiers is presented
in Yang [65]. Yang describes several pitfalls that may result from using these
measures, and suggests methods for avoiding them.

2.2 Similar Systems

There has been much research done in the text mining categorization area
and many systems have been proposed. Here we will mention a few systems
that are related or relatively close in concept and design to our proposed
system.

One system that our work was inspired by is a classification system
proposed by Li and Jian [26], a multi-classifier system for finding similar Web
pages in a Web directory. Their system is claimed to perform well in spite of
the fact that documents in different categories had many attributes in
common, making the classification task a big challenge [26]. The work
addressed in the current research follows a similar approach to classification
but in a different environment. The challenge of the current problem is in the
commonality of words, the sensitive environment, the need to change
categories dynamically, and many other features that make it more difficult.
However, the approach adopted in the current research was able to get
better results than the proposed classifiers in the Li and Jian work.

Another interesting system is the "Personal Web Watcher" that
suggests interesting Web pages to the user, whose interests it has already
learned. It can also suggest interesting hyperlinks to a user who is searching
for a key word on the Web. The system is basically a text mining classifier, in
which all the text mining steps have been customized for its specific usage
[18].

A fascinating text mining system is Newsblaster [3, 66]. Newsblaster is
like an automatically generated newspaper that builds itself from contents
that are available on the Web. This system, which was developed at Columbia
University, crawls Web sites for news and then clusters them into different

17

Master's Thesis - A. Tavasoli McMaster - Computer Science

categories. Then it classifies the categories it finds into the six most
important categories. It summarizes the news and builds the output into a
GUI that is published on the Web (See Figure 4). Newsblaster is a
combination of several text mining techniques, including summarization,
clustering, classification and several others. Its system overview and design
is described by McKeown et al [66]. The classification methodology used in
this work is a NaIve Bayes-like classifier that uses weights to classify the
documents [67]. At the time of this writing it is accessible at
http://newsblaster.cs.columbia.edu;'GoogleNews(http:/.!news.googJe.com)
is a somewhat similar system that has been commercialized.

OrlQ.I!lli!11rd B~ema"-.M.!!l\'i!1.M.!llitHJ!d Sh2.MLder Sur9~ry a Mo.u1!:l After
Sea!;9!1 (spo"'. II m1ieles) u!.eQArl'J

l'.~m 'Xlii. Ii,.. <4'~b.'I.·d l!<tllol);['1~1 Tq,w.;u,j: Elik R~. a:{\i .. 'k"\R.njk","<rl.!Ii.~~ "fit.: .!i.·l'i.'i,.:5.ht>i2\W.hi <':\i:..~u:d l !!~f:.~{
nlmu:d'J<p i~ Ihcd,i.~"",t<:; ;;i.,,<:'m~~t~ I"' "'. "'~H Sll><t<).O,j.-kl """'" F''1<-'-!>.~ .M~y .\I:d-mil '\."'l·b'lflre !fJ)'ll!'mv;.l':'«~'
1"'><'><1 I"",;r.;.~. ~;tcl~"">t<! ""pa;1F.>.'di-'ilI>~ E;;i.":">1",'tftk~""'r.~i;-hflll¢ i(ii'!..~. ~ o.i<'t,:,\ limJ\.""t~rr..ir f<. -l\<!-I:.=noi:/fttE--'Eu llil(i!'l!>l'
fmffiis-: '-::~~~IG Ihllim-.w it I~~i fv'flk sQXtld~'SW;\!I;Wt1_l~(. t~Gticl::$ tirlt<"f.!':\-u \>t 11RI! \\;<:~'<I &!;k»I, as t!:q'b}'>lr~~ JI.~
!.,11i:,\1 fMH«.'kii<11 I<>is;JHJ.~I;> :.!~!r±-~,dUofJ finl >1f,-jlAA ffl,';:. n..'th_-k\ ~"<.f.' <>d;i.\1l.'<l ~~l:;Ji'<J.mha~(.thlf all,(> Mi~ci ll!lhl

;n'.q.t ,,;.k.m!~ ... !<t;t C~~t Y.~I ~S~v.t.t~'f.b-:tl;'!.~ fu;: r}:",l."1' n·111'o1~ finl :,~~ ;1~ j~ I?:' ;,e:!.~-.!_ Thc.<Jd(;1; m\l~ ;'!.'!%;'·.y¥:lC,*.~&.m

~~ ;kCri>~!> "',~.il1 fi,~I~l.i ,,",;!!= t!<-~q &~ fut-Ih' IW. ,~~1:li~(JW",!U .\::(f~-.ifl-l';:ipfll'~~_lt:::t,"b<:!f.!\i:;!y A'l n~ = jli.I!!

4~ ~l~. ~00l me,"'~lu~illi ~il>ll!£~-::41 !ll>:'n:ii'bi;}s<i",~j{>1t'xkt$~;''''?:!ul !.\lMr,,1 !~ph.t;~ i{$'1!il~ IIDf ~-"i!.-d 'l\~f,;w.-:-,~(I,.

Other slories about Orioles, Showaller and innin9:
• :Q~J!:f.~. __ Q;.!~lg!.U'~~'t!L~!.\sl¥!llL.@~.r~:fl~'tl...~H.'!.t {G .ntkksl ilJE.D.ATIU

~:-"-~7""""-c--"I MDli!1fi1.li!pl~Y.llr~Hllt1!lWil!:!. maruJgRt.P1lJ1
Wakamalsu's firing (SpOl1s. II mlides)

ii::~ }u.i&~< ",j,,,,! .h.7lli I~ foc.\ ,-Of; H"'~.l,,: (..... '<5 ':I>.I1."'lo''1 ~ w,ru..,1$.Y; _ -...,.".,~ ;;h~;I ,~d
l;i'l'fI'hK'<' J~{t'1~","<xl: .~,>!ry (i~1 !J(,\ 7,,>:":'k~~i. l),c n,l.~ R;<;"~~± ;t:t<~~t M~~ ~i1h A li~k

>!1_~k~ll,;.Y!.~~~.1:-~ ml'ie }~iI'J' \~ud?1 J*lC I.<,\wb u,er..'lfMi?r.i:li.;il: !1~lll:lli.'<1!.~UI¢
MAeffi b U ~':~ Ci13 ;:';~j~ln--et!! \1>)':b..4 :<.f'ibJ iii tl.:: firit,; d W~1<!.{'i:-±i;;.l; Oo«!>: Rkt
:"~4.al.-MT!\";"Ii!.cll.xs. ;lnMm~ f-cl~ 'lill .. J:·I'I~1'11}" ,.,...:!t.:OJ.I;:r4X~f8 3.J::mF!cl;

Wftwl11Jjton G.i'lpltg!li! .. D...@l!l.t'lJ>!3..!llllll.!3rlan
Pothier Works on Returning to Form (SIl(lrts.1
",tIcies) mp..!l~Im

1b~r,;.~'b.l:\~ .. nt.i;.,.r"::<:~'i:i'li' V~"\hll n~;:i£:<'llf<'l:1lJ.ik~_ S;E:1J jX!l~f m:o
\~f<.-C. t~ l'J&.~kI;;,ol,j ;C_l 'lnr.$ ~?)ko.r ... Io\:'. 1M- I'j!~g ';:'<'A kl.!. lil !!<~.::
R:;"~ lu>~ ~.£'"& m1f>-'i>K~ ",1,11:,,5<:.>.!;.;' ::;;<'f'i [b I~<h.>cl 'O{;",in~ :te,t';l!
t\"N~ \"~'l H$u\>\~ik!'P."" Y\'il("«!.l.:r>f31t..:,,:e'lf~l,,!si"ll~""":!>;,

'hr.! '.l:t..~Il-.i\."-:t;'1im 1~11'Vi;,ts..

Olher slorles aboul Capitals, Boudreau and puck:

Another type of system that has the same characteristics as the
system used in the current research is email spam guards. In email spam
guards the goal is to classify email into two categories: spam and not spam.
Several email spam guards have been implemented and used commercially.
Conferences are held each year that are dedicated to this specific issue; e.g.
the Collaboration, Electronic Messaging, Anti-Abuse and Sparn Conference
(formerly known as the Conference on Email and Anti-Sparn or CEAS) [68]. A

18

Master's Thesis - A. Tavasoli McMaster - Computer Science

well-known and effective open-source spam guard is Mozilla email filtering
which has been implemented in Mozilla's recently introduced product
Mozilla Thunderbird Email Client (see Figure 5). This classifier is trained as it
is used by giving it feedback about which messages are spam and which are
noi [69]. It uses the Bayesian filtering algorithm to filter spam messages [3,
70]. The difference between an email spam guard and the present research is
that our system needs to go further by evaluating the importance of each
email so emails can be sorted, based upon their significance to the user.

:he o"i~ina~ Ill:~sage "as rece~~:~ ~t_fl~~~ ~ .~U9 2010 21.03.01 -0400 (EDT)

Figure 5 - Screen Capture from Mozilla Thunderbird Spam Guard

2.3 Applications

2.3.1 eHealth

Interest in eHealth, which is the usage of information systems in healthcare,
has spread globally and increased greatly in recent years [71]. There are
several classes of information systems that address clinical health care needs
and among them Electronic Medical Records (EMRs) and electronic Personal
Health Records (ePHRs) are of most importance to this study. An EMR
system is a system that supports healthcare professionals in recording and
managing clinical healthcare data electronically [72].

A digital Personal Health Record (ePHR) system is a system that
enables patients to access, enter, and manage their own health information
online [6]. A good review of different ePHR systems can be found in Halamka

19

Master's Thesis - A. Tavasoli McMaster - Computer Science

et al [6]. One very interesting ePHR platform is Indivo, which is free open
source secure software [41]. The system has been deployed in different
environments and has evolved gradually into enhanced ePHR systems.
Recently Dossia (www.dossia.org) and Children's Hospital in Boston have
been working together to further improve the Indivo platform into a
comprehensive ePHR system [6]. The myOSCAR system is also an ePHR
system which has been developed on the Indivo platform by the Department
of Family Medicine at McMaster University (see Figure 6). myOSCAR has
several interesting features, ranging from secure messaging to decision
support systems [8].

ffl;~~109t Visited ~ .. , "'Getting started ~LatestHeadlines~. 'I ; My05CAR PHR

Personal Health Record: (Administrator)

}). Per50na!/CQnte~t Info

n ~"1e~s3ges

. lobo::.:
- Sent

» Documents

» Medications

» f"'1e8surernents

Messages: Inbox

Figure 6 - A Screenshot of the myOSCAR Personal Health Record System

Some of the benefits that can arise from the use of ePHR systems by
chronically ill patients include being able to track their diseases in
conjunction with their healthcare providers, so that more rapid interventions
can be undertaken when problems or deviations occur. Collaborative disease
tracking can also improve communication between patients and caregivers,
making it easier for patients and caregivers to ask questions, to set up
appointments, to request refills and referrals, and to report problems. When
an ongoing connection between patient and physician is provided, this

20

Master's Thesis - A. Tavasoli McMaster - Computer Science

changes encounters from episodic to continuous, and reduces the time
needed to address problems that may arise [73].

There are several major challenges in designing and using ePHR
systems. These include sharing the appropriate amount of information with
patients. In some situations knowing all of the information can be harmful to
a patient's health, but studies suggest that there is a positive effect on patient
health due to improved doctor-patient communication [5]. Another
challenge is supporting secure messaging between patients and their
physicians, since patients can easily overwhelm doctors with unnecessary
and frequent messages. Another serious challenge is the interoperability or
integration of different healthcare systems together, which is a huge problem
in the eHealth area. Furthermore, gathering digital information through
surveys and trials of ePHR systems can be very helpful for the longterm
improvement of healthcare, provided that the uptake of such systems by
chronically ill patients is substantially increased. These challenges and many
others have been touched upon by Halamka et al [6].

As noted, a challenge that needs to be addressed is the increased rate
of communication between patients and healthcare providers. This could
increase workloads on already overloaded physicians, resulting in an
insuperable barrier to the use of this potentially valuable feature [6]. This is
particularly critical in regions where quick access to health professionals is
scarce; such as in developing countries [7] and specifically in Africa [74].
This challenge was the main motivation for this work. The proposed system,
by semantically triaging patient messages into different priority levels, can
help to address this issue.

2.3.2 Opinion Mining

With the exponential growth of Web content in recent years, users from all
around the world have the ability to express their views or opinions about
almost everything appearing on the Web; ranging all the way from thousands
of different products to a multitude of blog posts. Opinion Mining is a related
approach to the automated use of mining technology to acquire knowledge
from "user-generated content" [4].

Opinion Mining has several interesting applications. One is business
intelligence. Businesses are interested in finding out what people are
thinking about their products; they are constantly taking surveys to gather
user opinions. So mining knowledge about what people are thinking about
different products can provide useful business intelligence. This type of

21

Master's Thesis - A. Tavasoli McMaster - Computer Science

search can result in better designs for products and for Web sites that sell
products online. Another application is putting related ads in "user
generated content" [36].

Opinion mining is a customized version of text mining in which the
steps are tailored for better performance in mining user opinions. The first
customized change to deal with user opinions is at the abstraction level, with
specialized features for user opinions instead of normal feature vectors [4,
75]. Because of descriptive words like "great", "super", "good", "bad", "awful",
etc. in user opinions, a technique has been introduced to distinguish between
good and bad reviews, using part-of-speech tagging and semantic orientation
[4, 76]. Several other machine learning techniques have been introduced for
semantic classification; for example using SVM to distinguish between
positive and negative reviews [4, 77]. There have been papers on mining user
opinions to find the characteristics of a product that a user was satisfied or
not satisfied with, such as Hu and Lio [4, 75, 78]. There have been other
published works regarding similar applications such as finding spam or
offensive reviews [79].

22

Master's Thesis - A. Tavasoli McMaster - Computer Science

3. Automated Message Triage (AMT) System
The Automated Message Triage (AMT) system is proposed to semantically
triage user messages. The system's goal is to dynamically assign a triage level
to a user message, where the triage level will represent its significance for
the user. In the healthcare field this significance level can be the urgency of a
message; in opinion mining this could be defined as the appeal of a user
comment. The triage level can be defined as the application necessitates.
After these categories for user inputs have been defined, the system would
automatically tailor itself step by step to the users' needs and would be able
to improve continuously in selecting the appropriate triage level as more
feedback is gathered from users (see Figure 7). An interesting feature of the
system is that categories can be dynamically changed if required. However,
to achieve good results quickly, a set of categorized messages is needed as an
initial training base for the application. This initial stage helps AMT to adapt
faster to its environment [3].

. _______ - US!!1 feedMCK:4'
Automated Message.. - - - --
Triage (AM1) System - --', . .. ,., .. f'·

level"

Figure 7 - Automated Message Triage System

23

Master's Thesis - A. Tavasoli McMaster - Computer Science

The proposed system can be used to triage messages that are coming
to a healthcare professional, sort emails and messages that have to be dealt
with by a user, sort user comments according to their significance in a blog,
choose the best reviews to be shown automatically in a product review page,
or even sort news feeds like RSS from the Web according to user interests.

As noted this proposed system can have a variety of applications.
Despite the fact that the system has been designed and tested as an
application in healthcare field, it can be adapted to other fields requiring this
capability, with only minor changes.

3.1 eHealth as the Main Application

As mentioned, the AMT system was inspired by and is designed to cater to
the healthcare field. As discussed in 2.3.1, studies have suggested that the
use of ePHRs has a moderate and positive effect on patient-doctor-patient
communication [5]. myOSCAR, an ePHR system, includes a messaging system
that allows patients to communicate with their physicians [S] so their
physicians can read the messages and take appropriate actions, such as
replying to the messages or scheduling appointments to address perceived
problems. Because some messages may be low priority or require simple
answers, it is important not to overwhelm the physician with these messages
[6]. Actually one of the main concerns of health care professionals in adopting
ePHR systems is the fact that they may be overwhelmed with unwanted and
unimportant messages [SO]. In a recent trial of myBP1, an adaptation of
myOSCAR that helped to monitor and manage patients with hypertension, an
experienced professional managed the incoming messages from patients
through a triage process [Sl]. This drastically reduced the load on the
patient's personal physician by answering the less urgent questions or
directing the patient to relevant online information, while forwarding the
urgent ones to the attending physician. This is a solution to the physician
overload problem, but it can be expensive, since an experienced professional
must be on call 24/7 to handle the messages, and as the patient load
increases the amount of staff time needed increases proportionately. This
makes using an automated system to triage the messages very useful and
vital.

One valuable usage for AMT is to automate the triage process so that
less urgent messages can be handled automatically, while ensuring that truly
urgent messages are forwarded to on-call professionals for rapid response.
Because of the sensitive nature of this delicate environment, a high level of

1 More information about myBP trial can be found in 4.1.1

24

Master's Thesis - A. Tavasoli McMaster - Computer Science

precision is needed to ensure that false negative handling of incoming urgent
messages is virtually eliminated. Moreover, this system can also triage text
messages from patient cell phones to their health professionals. In this way
the connection between patients and their physicians can be even closer with
little increase in triage's staff time. This is very important in regions such as
developing countries or remote rural areas where access to health
professionals is difficult and personnel are scarce [7].

To achieve the goal of the system, a number of messages is needed to
train the proposed system so it triage incoming messages effectively. The
proposed system will become adapted to its environment as more and more
feedback is received from professionals that monitor the system to sort
incoming messages. In the next section we will examine AMT system design.

2S

Master's Thesis - A. Tavasoli McMaster - Computer Science

4. Under The Hood

In this section we will go one level deeper into the proposed system and will
discuss design and implementation steps of the system. The first step is to
review the messages that were used in training and testing the system.

4.1 Data Gathering and Preparation

r
E-mail messages that were used to test the classifier were gathered during
the myBP study. Here is a brief introduction to the myBP trial, how it was
done, and why certain methods were used.

4.1.1 myBP Study

Patient Self Management of chronic diseases has an important effect on
patient health, both physically and psychologically [82]. According to the
Province of Ontario's Chronic Disease Prevention and Management
Framework, Self Management involves allowing patients to discipline
themselves to cope with their diseases [83]. The myBP Study, Patient Self
Management Approach for Hypertension Using Personal Electronic Health
Records, was conducted to determine the effects and the value of using Web
based electronic Personal Health Records (ePHRs) by patients with
hypertension [81].

The myBP study was carried out in two phases (see Figure 8). The
first phase was used to refine the intervention of Web-based ePHRs on
patient blood pressure self-management. The second phase was an
introductory evaluation of ePHRs for supporting self management [81].

4 Months 12 Months

26

Master's Thesis - A. Tavasoli McMaster - Computer Science

In the firs~ phase, which took 4 months, an extensive literature review
was done and t~e study was designed as follows. Patients were chosen from a
group of people with uncontrolled or undiagnosed high blood pressure [81].
The characteristics of people chosen for the trial appear in Table 4.

Average age >58 years (average age per group is 58±4 years to
approximately 70years)

Average SBP Ranged from 120±7 mmHg to 152.2±10.4 mmHg
Average DBP Ranged from 76±7 mmHgto 89.0±7.9 mmHg

Table 4 - Patient Characteristics Table [81J

Patients were divided into seven trial groups. Five groups were given
the same care as before, one group was given some follow-up during the trial
using regular mail, and one group (the intervention group) was given access
to a Web-based ePHR system. For monitoring their blood pressure, five in the
latter group were provided with a blood pressure monitoring device [81].

The intervention group used the myOSCAR platform [81]. myOSCAR is
a secure, online health record, based on the Indivo open source, open
standard, Web based, and secure [41] personally controlled health record.
myOSCAR provides an Application Programming Interface (API). myBP was
developed using this API [8]. This system has the potential to become a
Widely used health self-management platform for patients with chronic
diseases. Patients can add/edit or share their health information using
myOSCAR, and it can also easily integrate with the OSCAR Electronic Medical
Record (EMR) system [8]. OSCAR, (Open Source Clinical Applications &
Resources), is an open source, open standard, secure EMR that was developed
by the Department of Family Medicine at McMaster University and is now
being used Widely across Canada and internationally [84].

Using the myBP Web-based platform, patients were able to use the
features of the myOSCAR ePHR during the study. They could record their
blood pressure, see their blood pressure charts to track their progress, and
access their healthcare providers (pharmacists, dietitians, nurse
practitioners, and primary care physicians) using myOSCAR messaging.
Patients took their blood pressure once a week and entered it into myBP. One
interesting feature of myBP is its action plans, which are patient pledges to
change their lifestyles so they could control their hypertension. Action plans
can be designed with myBP software, and myBP gave patients useful

27

Master's Thesis - A. Tavasoli McMaster - Computer Science

information using the integrated decision support feature to help them to
change their lifestyles [81].

4.1.2 Exchanged Messages
As mentioned previously, Web-based application patients can send messages
to their health provider. They can directly ask a question or they can report a
health issue or a technical problem (see Figure 9). A triage person in the
myBP trial was a trained clinical assistant or nurse who checked incoming
messages and passed them to an appropriate person for action or answers to
the messages he or she was capable of responding to [81].

Nurse Dietician
Practitioner

Pharmacist

Figure 9 - myBP Messaging System [81]

Other health professionals working with the myBP study checked
each patient's health status regularly and took appropriate action. For
example if patients were not entering their blood pressure regularly they
would be sent a reminder. More details on actions that were taken are listed
in Appendix I. During the 12 months of the study about 1460 e-mail messages
were exchanged between patients and health professionals. Most were sent

28

Master's Thesis - A. Tavasoli McMaster - Computer Science

by health care professionals during regular checks of patients health status
[81].

As the number of patients supported by systems like MyOSCAR
increases, the number of messages sent from patients becomes a bottleneck
and much more assistant time is needed to support the triage process. To
overcome this problem the proposed AMT platform could automatically
determine the triage level for incoming messages so health professionals
could be automatically informed about urgent messages that needed a
response. This way the healthcare staff could focus on important messages
and save time otherwise spent responding to non-urgent messages. During
the study only a few very urgent messages were actually sent. In a case like
this, when health professionals are flooded with messages, the possibility of
missing urgent messages gets higher. The AMT platform could help them to
focus on truly urgent ones, so the chances of missing urgent messages is
reduced, even in the presence of a heavy workload.

The next section focuses on how the information needed for AMT was
extracted from the regular message stream.

4.1.3 Data Cleaning

As previously mentioned, about 1460 messages were exchanged between
patients and healthcare professionals during the myBP study. The messages
were in XML format, but much was information irrelevant to our purposes. A
sample XML message can be seen in Appendix II.

The XML file contains information such as sender, receiver, whether
the message has been read or not, etc. For training purposes, only the content
of the message to be tested and triaged was needed, since message
classification is based strictly on message content. A brief description of the
steps taken to clean the data follows.

The first and most critical action taken was to protect patient privacy
by anonymizing messages and removing private information. Because of the
variety of private information and the numerous messages a text mining
program called GATE[ll] was used to detect names, e-mail addresses, and
phone numbers in the messages and then a simple Perl script [85] located
and replaced them by the XXX symbol, as shown in the sample message in
Appendix II. Appendix III demonstrates how GATE detects names, and a
sample Perl script used to eliminate private information.

29

Master's Thesis - A. Tavasoli McMaster - Computer Science

To ensure patient privacy after this automatic process a manual
review ensured that all the private information had been omitted. At the
same time, the messages were flagged with two major triage categories, to
distinguish between messages that were worth considering for the study and
other messages that were only info"rmative, such as the regularly transmitted
messages mentioned previously. This helped the myBP project staff to
provide triage classifications for the messages in the study. The cleaned
messages were sent to the myBP staff who triaged them as in the following
process.

First the messages were divided into different categories. Table 5
contains information about the categories.

Type Timing Category

Immediate A

Personal
/

Within 24 hours • B

/ ~ Clinical Within 72 hours C --.
Generic Within 72 hours D •

Technical (IT) / Data collection --I.. Within 72 hours E

Duplicate Messages F

Table 5 - MyBP Patient Message Categories

30

Master's Thesis - A. Tavasoli McMaster - Computer Science

Based on their priority levels, the messages falling in the different categories
were classified into the following triage levels:

Triage Des~ription
Level

Level 0 Immediate action - probable emergency (if recognized by
the system, would automatically contact triage person
and emergency service). Includes message category A.

Levell Immediate action - to be handled by the triage person (if
recognized by the system, would automatically contact
triage person). Includes message category A.

Level 2 Response within 24 hours - to be handled by triage person
(if recognized by the system, or possibly information
provided through an automated response). Includes
message category B.
Examples: Patient appointment times; anything to do
with non-urgent elevated / potentially blood pressure
readings

Level 3 Response within 72 hours (since the aim is that all
messages will be addressed within 3 days). Includes
message category C, D and E.
Example C: Issues with personal blood pressure
monitors
Examples D: Medication changes to be updated;
updates to other online personal health record
Examples E: Issues accessing different aspects /
components of online personal health record;
difficulties with survey completion; lost passwords;
etc

Level 4 Duplicate message - not used for classification
Table 6 - Triage Level Detmls

Note that:
• If there were two or more issues addressed in a message, the triage

level assigned must be for the most urgent issue (ie, the issue associated
with shortest response time)

• Triaging of messages was based on response time to the message and
NOT the time required to provide a solution to the message.

31

Master's Thesis - A. Tavasoli McMaster - Computer Science

• All messages require a response, even if only an acknowledgement
that the message was received or to thank the patient for the information.

Two nurses provided triage levels for 164 of the 1460 messages. The
other 1296 me·ssages were mostly automatically generated messages as
mentioned in Appendix I and were not retained for this study. To ensure that
triage levels assigned to messages were appropriate and that nothing was
overlooked, two nurses did the triage in parallel. There were a few
differences between the nurse opinions on triage levels that were resolved
before using the messages as the training corpus. Appendix IV indicates these
differences and how they were addressed.

Another concern was that there were a limited number of patients and
the length of the study was relatively short. There were no level 0 messages
in the data and only one level 1 message was available, so the training corpus
was augmented with simulated messages for these levels. 20 training
messages were simulated for each of level 0 and levell, based on the
symptoms and effects of hypertension [86]. These were added to the
message corpus and used during the training and testing stages. Appendix IV
lists the simulated messages. In the last step all level 0 to 3 messages were
saved into separate identified text files for training and testing purposes.
Level 4 messages were not used because they were just duplicate messages
from other triage levels.

Table 7 shows the number of messages at each triage level that were used
for training and testing purposes.

Triage Level Number of Messages
Level 0 20
Levell 21
Level 2 19
Level 3 69
Level 4 74

Table 7 - Number of Messages by Triage Level

Figure 10 summarizes the actions taken to prepare the data for training.

32

Master's Thesis - A. Tavasoli McMaster - Computer Science

Figure 10 - Steps in Data Preparation

There is no specific method to ensure that the sample size is large
enough for a text mining process. The only way to ensure that the sample size
is large enough is to check the performance of the system [3]. Given that the
results obtained were very satisfactory, it seems that our initial set had an
adequate sample size. Details of the proposed system's classification
performance are discussed in the next chapter.

4.2. Classification
Predictive modeling [3] is a powerful method of text classification. Text
classification (text categorization) consists of two phases. The first phase is
to build a model from training documents and the second phase is using the
training model to categorize documents. However, features must be
extracted from the documents before using them to build or apply the model
[1]. The text classification process is shown in Figure 11. More information
on the variety of feature extraction and classification methods can be found
in the literature review in 2.1.1.3 Document Classification.

33

Master's Thesis - A. Tavasoli

Training Document

McMaster - Computer Science

Categorization
Model

Figure 11 - Text Categorization: Training a Model and Classifying a New Document [IJ

As mentioned in 2.1.1.3 Document Classification, numerous linear and
non-linear methods have been introduced for text classification. While non
linear methods such as neural networks and support vector machines
normally provide better results than linear ones, they are not useful for many
practical applications [87], because they lack clarity and completeness. In the
proposed system's application domains such as medical or opinion mining, it
is very useful to be able to read, evaluate, and optimize the underlying model.
Even though this feature has not yet been implemented in our system; it is a
useful future extension. Considering this future extension makes linear
algorithms like K Nearest Neighbors or Naive Bayes the only choices suitable
for this work.

For implementing the categorization algorithms there are some well
known open source data mining tools like GATE [11] or WEKA [88]. Both are
Free, Open Source, implemented in Java, and have an Application
Programming Interface (API), which allows other programs to use their
algorithms and functions as a library. A problem with big packages like GA TE
and WEKA is that they are immense applications containing many data
mmmg functions ranging from pattern recognition to knowledge
visualization; editing their code to use in desired situations is difficult and
challenging. As a result, to implement the proposed system a less extensive
Java based library for text mining called LingPipe [89] was chosen. LingPipe is
much smaller than GA TE or WEKA, allowing substantial customizability for

34

Master's Thesis - A. Tavasoli McMaster - Computer Science

software developers. LingPipe provides several libraries for different text
mining methods. The code developed for the proposed AMT system using
LingPipe software is listed in Appendix V.

4.2.1 Classifiers Tested

Among the linear methods like K Nearest Neighbor or NaiVe Bayes that are
discussed in chapter 2, linear classification methods needed for the purposes
of AMT should address several issues, including learning and converging very
fast so that the classifier can be adapted to many environments and that the
models are able to be built dynamically enough so categories can be added or
removed on the fly. These are important characteristics for AMI's possible
applications. For example, healthcare practitioners may change triage levels
to fit new unpredicted needs.

The last property of the classification algorithms is that they should
be available in an open source library package (Le. LingPipe [89]), so they can
be implemented and evaluated in the limited time frame ofthis work.

Formally, the classification process can be described as:

Suppose C = (cpcz, ... ,cm) is a set of m categories, and D = (dpdz, ... ,dp)

is a set of p documents. Classification is a function that maps each document
in D into a set of categories. So Classification is the function f such that
j:D---7C.

Each document is composed of set of words or features 2• So each
document is presented as follows: d i = (wI.WZ'···'wn) in which WI to wn,are

the set of features extracted from the document.

Table 8 shows the classifiers that were chosen and tested for this
work, including their general characteristics. More details about each
classifier is provided in separate sections below.

Classifier Data Model Tokenizer Feature
Type Extractor
LM Classifier n-gram based on No Tokenizer No feature

characters extractor
NaIve Bay_es BaR-of-words Indo-European Standard

2 See chapter 2 for more information
35

Master's Thesis - A. Tavasoli McMaster - Computer Science

Classifier Tokenizer feature
extractor

K Nearest Bag-of-words Indo-European Standard
Neighbors Tokenizer feature

extractor
TF-IDF Bag-of-words Indo-European TF-IDF feature
Classifier Tokenizer extractor

Table 8 - Classifiers Used In ThIs Work

4.2.1.1 language Model (LM) Classifier

Language Modeling is a very interesting classification method that has been
used widely in speech recognition [90]. More recently it has been used in
many other areas [91]. One ofthe simplest and most effective data models for
language modeling is the n-gram data model [92]. N-gram is a sub-sequence
of length n of the items given. The Language Model rule is to classify a newly
given document based on prediction occurring n-grams. If an n-gram has
occurred before, the new document is given a higher probability of belonging
to that category and, if it has not occurred, less probability is given to that
document. The items in n-gram can be words or characters. In our case, using
LingPipe, we built a language model based on character-based n-gram [91].
According to the language model, the probability of an item (characters or
words) is calculated as [91]:

In the formula IWj_n/+p,,,,w j I and IWj_n/+i' ... ,wj_ll are the number of

times the specified n-gram has occurred in the training documents [91].

LingPipe's LM Classifier in the training phase builds a character
language model for each category of classification. During the classification
phase it calculates the conditional and joint probabilit'j of the given item to
be classified. In the classification step the joint log probability is calculated as
follows [93]:

Where wl",wn is a character sequence and C is the category. Pr(C) is
/

calculated using marginal category probability. After calculating this joint
probability, the n-gram is scored using cross entropy rates as follows [93]:

36

Master's Thesis - A. Tavasoli McMaster - Computer Science

log2 Pr(wi· .. w n. ,C)
score (Wi··.W n. ,C) = .

. Length(w, ... W n) +2 .
This score actually is a smoothed version of conditional probability

that represents whether the given n-gram belongs to a certain category.
Finally, for choosing which category the given n-gram belongs to, we need to
find the highest score between categories (Le. we need to
determine ARGMAXc Pr(C,wi ... wn) [93]).

This classifier has been implemented as the LMClassifier class in
LingPipe. The proposed AMT system uses the DynamicLMClassifier class.
This is derived from LMClassifier and is tailored for active learning
applications, satisfying the AMT requirement for a classifier to continue to
learn as it is used [93]. The LM Classifier has proven to work well in similar
applications such as ePaper [91] and has also shown good results in the
current study. The AMT code that uses this classifier appears in Appendix V.

4.2.1.2 Indo-European Tokenizer

LM Classifier does not use a tokenizer since it uses a character n-gram data
model. However, for other classifier "bag-of-words" data models, as
described in literature review, are used. In order to extract words (tokens in
our case) a simple tokenizer, the Indo-European Tokenizer, was used [93].
This tokenizer recognizes the patterns listed in Table 9 as tokens.

Pattern Description
Numerical Any sequence of numbers, commas

and periods
Hyphen Sequence Any number of hyphens

Equals Sequence Any number of equal signs(=)
Double Quotes Double forward or backward quotes
AlphaNumeric Any sequence of uppercase or

lowercase letters or numbers
Table 9 -Indo-European Tokemzer Tokens [93J

Note that whitespaces are also treated as any sequence of white space
characters. It is worth noting here that one great benefit of using this
tokenizer instead of an English Tokenizer is the ability to extend the AMT
system to use any Indo-European language such as French or Spanish. More
details can be found in the LingPipe documentation [93].

37

Master's Thesis - A. Tavasoli McMaster - Computer Science

4.2.1.3 Na'ive Bayes Classifier

The Naive Bayes Classifier is a classifier that uses Bayes theorem and assumes
a rigorous independence assumption between features. It is commonly used
as a classifier in many applications. This classifier is described in Section
2.1.1.3.2 NaIve Bayes Classifier. To use the Nai"ve Bayes Classifier the
document must be tokenized in order to extract the feature set. For the
proposed AMT application, the Indo-European Tokenizer was used (see
above). These tokens are converted into features directly using the
TokenFeatureExtractor function in LingPipe [93]. The reason for not using a
feature reduction technique is mentioned in the section Comparison of
Classifiers. As noted the Naive Bayes Model assumes independence between
tokens (Le. it uses the "bag-of-words" data model).

In the training phase the feature vectors are saved and when a new
document is to be classified the following steps are taken.

According to Bayes rule the conditional probability of a word
sequence belonging to a certain category can be determined as follows [93]:

Pr(C).Pr(wl .. .wn _ I C)
Pr(C I W 1 ... W") = '

, Pr(w1 .. ·wnJ ,
efl}'-

We are only interested in the numerator since the denominator is
constant and can be neglected. PreC) can be calculated using a multivariate
estimator [93]. And Pr(w1 ... w" I C) is: ,

"i

Pr(w1• .. w
lli

le)= ITp(w i Ie)
;=1

To calculate pew; I e) LingPipe uses a formula based on the Dynamic
Language Model, (see the Language Model Classifler section), and smooths
the token model for better prediction results [93]. Now as mentioned in
formula (f1) to the following is calculated in order to determine the
probability that a certain feature vector belongs to a specific category. So the
result ARGMAXcPr(C) ,Pr(WI ,,,w/I I C) gives the category that the given
sequence ot words belongs to LYJ J. Figure 12 from [1] shows the entire
process as described:

38

Master's Thesis - A. Tavasoli McMaster - Computer Science

Output

TQkenized Language Models

TrainIng Documents

Figure 12 - Classification Process o/Naive Bayes Classifier [1]

This classification is implemented as the NaiveBayesClassjler class in
LingPipe, a direct derivative of the DynamicLMClassifier mentioned in the
Language Model Classifier section. A more detailed description of this
function appears in the LingPipe documentation [93]. The code used in AMT
to implement this method is in Appendix V.

4.2.1.4 K Nearest Neighbor (Knn) Classifier

The K Nearest Neighbor (Knn) Classifier uses the K Nearest Neighbor
algorithm to classify messages. A detailed description of this classifier is in
Section 2.1.1.3.1 K Nearest Neighbor. A customized version of the Knn
algorithm that was used in this work, is as follows.

In the training phase the algorithm stores feature vectors of the
training examples along with their categories. The features are extracted
with the "bag of words" model, using the Indo-European Tokenizer [93]. This
phase is the same used for the Naive Bayes Classifier (see the Naive Bayes
Classifier section).

39

Master's Thesis - A. Tavasoli McMaster - Computer Science

In order to classify a "new document (see Figure 13), the distances
between the new document's feature vector and the vectors saved in the
training phase are calculated. In the current case, after trying different
distance functions, the normal Euclidean distance algorithm was chosen due
to its better performance. Details of the performance measures calculated are
in the Comparison of Classifiers section. The Knn classifier for calculating
distance between vectors uses a concept called proximity [93], calculated as
follows:

This proximity measure scales the distance function to a positive real
number in [0 .. 1] to avoid dividing by zero. The LingPipe distance function
always returns absolute positive values, and calculates proximity between
the new document and all of the training documents. Then it chooses the first
k documents with the highest proximity to the new document's feature
vector. Finally it assigns the new document to the category that appears most
frequently among its k neighbors [93].

Training Documents

I VeotQF I I Category I

0001 C2 Similar

Ooc2 Cl

0003 C2

I I

I DOGjl I Dissimilar

Figure 13 - Knn Classifier [1]

The Knn Classifier is known to work well in very irregular
environments [93], and this describes the nature of the environment we are
targeting for the AMT system. This classifier has been implemented in
LirzgPipe using Kl1nClassifier class. A more detailed description can be found

40

Master's Thesis - A. Tavasoli McMaster - Computer Science

in LingPipe documentation [93]. Its implementation code for AMT appears in
AppendixV.

4.2.1.5 TF-IDF Classifier

The TF-lDF Classifier is based on calculations of Term Frequency (TF) and
Inverse of Document Frequency (lDF) to classify messages. More detailed
information and similar versions of TF-IDF are in Section 2.1.1.2 Feature
Reduction or Selection. TF-IDF is mostly known as a feature reduction
technique; however, in LingPipe it has been tweaked to fit as a classifier.

LingPipe's TF-IDF classifier training phase is similar to that used for
the Knn and NaIve Bayes classifiers. First, features are extracted from the
training documents using the Indo-European Tokenizer. These feature
vectors are smoothed using the TF-IDF measure, which is based on token
frequency and its inverse document frequency [1]. This normalization is
different from feature reduction; in feature reduction the undesired features
are eliminated, but here the undesired features are not omitted and may only
be set aside when not needed.

The training phase using TF-IDF distance is as follows.

If W j is a feature in category, C jJ then the inverse document frequency is [93]:

dlf(w.)
idf(w.) = In(])

] In.

Here, df(w) is the document frequem..y of feature w j' or the number

of categories in which feature w j has occurred, and m is the total number of

categories. Thus, the more a feature is used in different categories the less
weight will be given to it. term frequency is defined as [93]:

In which c01mt(dj ,l>vJ is count of Wi feature in elj document. Square
roots are used to normalize the term ft'equency factor. Then TF-IDF weights
are saved into a weight vector v, calculated as [93]:

41

Master's Thesis - A. Tavasoli McMaster - Computer Science

This vector is saved and used as a reference in the classification phase.

In the classification phase, the TF-IDF distance measure is used to
classify a new document. The first step involves extracting tokens using the
token extractor as mentioned before, and the features are saved in a feature
vector called]. TF-IDF weights are calculated in the same way and saved in
vector x [93].

xLI;] = tj(f; ,current _doc) X idf(ji)

Afterwards the vector cosine distance score is calculated for each
category [93]:

v[d.].x
score(v[d.J x) = cos(v[d.J x) =]

] '] , Iv[dj]I·lxl

Here, the numerator is a normal dot product of the two vectors, and
the denominator is a number that represents the product of the two vector
sizes. The cosine of the two vectors is 0 if they are orthogonal, 1 when they
point in the same direction, and -1 when they are pointing in opposite
directions. Therefore the result will be a number between 1 and -1,
representing the new vector's fitness to be assigned to the candidate
category. The category w'ith the highest score is used to classify the new
document [93]. The TF-IDF classification process is shown in Figure 14.

BE
Doc2 Doc5 Doct

G2 Doc4 DocS Doc 6

B I Docp>2I Deep Docl

Figure 14 - TF-JDF Classifier Classification Process [1]

42

Master's Thesis - A. Tavasoli McMaster - Computer Science

TF-IDF classification is implemented in LingPipe as
TfIdfClassifierTrainer class. More detailed implementation notes are in
LingPipe's documentation [93]. The AMT system's code that implements this
classifier is in Appendix V.

4.2.2 Combining Classifiers
After trying single classifiers to classify the documents, gammg greater
performance by combining classifiers is a proven approach. Section 2.1.1.4
Multiple Classification Combination, touches on combining mUltiple
classifiers and similar systems. Three bagging methods for combining
classifiers were chosen for this work and one of the combination methods
was tailored for this work's environment in order to gain even greater
performance. The tailored new method proved to perform better than any
other combination methods, through rigorous tests on our training corpus.
Details of each of these combination methods are described in their specific
sections below, and in the Comparison of Classifiers section they are
compared not only among each other but also with single classifiers. Finally,
the best classification method was chosen to be the basis of the proposed
AMT system.

The combination methods used were a bag of classifiers already mentioned,
including:

1. Language Model Classifier
2. NaIve Bayes Classifier
3. K Nearest Neighbor Classifier
4. TF-IDF Classifier

The combination methods used included:
1. Simple Voting
2. Dynamic Classifier Selection
3. Adaptive Classifier Combination
4. New Adaptive Classifier Combination

4.2.2.1 Training Multiple Classifiers

Training phases for the classifiers used were the same as training each
separate classifier, as already discussed. The training algorithm basically
involved training the separate algorithms one by one. After the training
phase all the training information was available for each of the individual
classifiers.

43

Master's Thesis - A. Tavasoli McMaster - Computer Science

4.2.2.2 Simple Voting

As mentioned in 2.1.1.4 Multiple Classification Combin~tion, simple voting is
just classifying the new document to the category that most classifiers have
voted for [26] (the process is shown in Figure 15). However, in the AMT
system the simple voting algorithm was tweaked to avoid situations where
votes are equal, thus adding better performance to this simple method.

In our tweaked version of the simple voting algorithm a score is
calculated for each category through each classifier's weighted vote in order
to avoid ties in voting. These weighted votes are based on the classifier's
assurance when selecting that specific category, calculated as the probability
ofthe classifier's choice for its best category. The main benefit ofthis method
is that it avoids confusion and breaks ties in voting, which can occur when
votes for each category are the same (e.g., when all classifiers choose
different categories). In these cases choosing the category for which the
classifier is more certain is a good approach.

44

Master's Thesis - A. Tavasoli McMaster - Computer Science

Simple Voting

o
Naive L-'..g_S,.;.,.'}'I-(_)_m_il_ifl_1Y_.B.:"'
Bayes ,- . ;?

Classli!er

.~~~~1--.9_0~~I-C __ €_'rt_a_in~~ __ ·0

B TF-IDF 4~~' Certainty
Classlfler

Category Score

Cl HIS

02 1,3

02 0

Figure 15 - Simple Votillg Classifier Combination witl! Modification

Assurance levels are calculated differently for different classifiers.
With NaiVe Bayes and LM Classifier the probability calculated can be used
directly because these numbers represent the certainty of the classifier when
it chooses a certain category. This probability is also known as posteriori
probability [58]. On the contrary for Knn and TF-IDF classifiers, the measure
of comparison is a score which cannot be used directly to represent
assurance level. For these algorithms, the scores for the different categories
were summed and the current score was divided by the corresponding sum
to simulate the probability representation as follows.

P ('.) = score(c) . r c, "\:'
£..J score(c)

j

Details of code implementation for this classifier are in Appendix V.

45

Master's Thesis - A. Tavasoli McMaster - Computer Science

4.2.2.3 Dynamic Classifier Selection;

Dynamic Classifier Selection is based on the concept of choosing the classifier
that has been best at classifying a new document [58]. See Figure 2 to see a
good demonstration of Classifier S.e.lection. More discussion about this
method is in 2.1.1.4 Multiple Classification Combination. Dynamic Classifier
Selection in AMT is based on work by Li et al [26]. The classifier with the
best local precision is chosen, based on its performance at k nearest neighbor
selection of the new document.

To implement this algorithm, the k nearest neighbors of the new
document are chosen in the training data, and then the classifier that has best
precision in the neighborhood is selected to classify documents. Both normal
Euclidean distance and the so-called soft [26] cosine distance were used in
this work to calculate the neighborhood of the new document, with no
significant differences between the two results. More details about dynamic
classifier selection appear in the literature review. Code for this classifier is
given in Appendix V.

4.2.2.4 Adaptive Classifier Combination

The demonstration of classifier combination is available in Figure 3. This
application in AMT was inspired by the discussion on Adaptive Classifier
Selection by Li [26]. As mentioned in 2.1.1.4 Multiple Classification
Combination, classifier combination is a method of combining results from
different classifiers to get better performance.

The pseudocode for adaptive classifier combination is as follows [26]:

1 - Find the k nearest neighborhood for the new document from the training
data. In the AMT system NB(new _doc) = (nb" ... ,nbk) is calculated using the
Euclidean distance k nearest neighbor method.

2 - The new document is classified using all of the n classifiers. The
categories selected are C' = (c:,c~, ... ,c~) E (c"c2 , ... ,cm)

3 - For all categories < E C' we calculate the following:

n k

Acc; = L Lcos(nbj,new _doc) x Pr(c; I nbj E <)
s=1 j=1

where cos(nbj,new _doc) is the cosine distance between vectors obtained

from the n classifiers and the newly given document and Pr(c; I nb j E <) is the

46

Master's Thesis - A. Tavasoli McMaster - Computer Science

probability that nb j neighborhood documents have been assigned to <. The

method for calculating this posteriori probability is described in the section
on simple voting combination.

4 - Finally the new document is classified to category < where
u = ARGMAX;(Acc)

The implementation code for this multiple classification method is in
AppendixV.

4.2.2.5 New Proposed Combination Method

The performance of the adaptive combination method has been improved
with the following adjustment. Since finding neighbors which are closest to
the given vector has proven to be an NP-Hard problem according to the
Closest Vector Problem (CVP) [94], we aimed at simply improving the
neighborhood locating method as much as possible. This revised classifier is
similar to the Adaptive Classifier Combination and the first step of this
classifier is tweaked where the neighborhood is being located. If the
Euclidean distance method is substituted for the Cosine distance method no
significant change occurs in the classifier's performance. Not even changing
the method to other more radical methods like Taxicab distance [38] will
change its performance. After reviewing the training corpus it was found that
a given document's neighborhood does not have a great similarity to the
given document in most cases because first, there are a relatively small
number of messages in some categories and second, the nature of our
environment which is basically sentences from patients. To overcome this
problem we used the soft cosine measure for finding the neighborhood with
cap of .70 on similarity. This is the cosine of 45 degrees, which means that
documents that are at least half similar to each other will be selected as the
neighborhood. However, using this cap is likely to reduce the precision of the
classifiers being used because most of the documents will not be assigned
any neighborhood and will be out of range of this cap. Softening the cap will
not improve the classifier's precision and might make it difficult to choose an
appropriate neighborhood. Therefore an innovative method was introduced
to solve the problem. In the new approach the 45 degree similarity cap is
used, but if there are fewer than two neighbors for the new document, the
two best neighbors are chosen as the document's neighborhood. This
adjustment proved to be very effective and the Adaptive Classifier Selection

47

Master's Thesis - A. Tavasoli McMaster - Computer Science

with the neighborhood-locating tweak showed better results than the other
methods on almost all the test cases run.

The pseudocode for the neighborhood-locating method is:
1 - Use the cosine" measure to locate the k nearest neighbors of the new
document.

2 - When there are more than two documents in the neighborhood set do the
following step, starting with the least similar neighborhood document.

3 - Check to see if the similarity of the new document to the neighborhood
document is less than 0.7. It is, then omit that neighborhood from the set
that will be considered.

The result of this method is compared to other methods in the next section.
The code used for this method is in Appendix V.

4.2.3 Comparison of Classification Methods
This section compares different classifiers, using measures that were
introduced in 2.1.1.5 Classifier Performance. A new type of error is also
introduced, which is the "critical error". This type of error occurs when a
level 0 message (an absolute emergency) is assigned a lower priority level
category (Le. a higher numerical level) or if a level 1 message is put into a
lower level category. Other cases, such as putting a non-emergency message
into an emergency level or misplacing level 2 and 3 messages instead of each
other are not as critical in the healthcare environment, so critical error (Cerr)
is a good measure for comparing classifiers in this application. Cerr is
calculated as:

tHunber (} f leveW messages tn other lezJels + number (} f levell messages in level2 or 3
C.~=------~--------~--------------------~--------~-----------'" count of lellelO 1nessag8s + cotmt of ieveil messages

It also worth noting here that recall measure, as described in 2.1.1.5
Classifier Performance, is measured for each class separately. The recall
measure, which is used for classifiers comparisons, is average recall of all
categories, a good representation of recall for all categories, and calculated
as follows [93].

1 m
- Lrecall(c)
m i=l

48

Master's Thesis - A. Tavasoli McMaster - Computer Science

in which m is number of categories and recall(c) is recall for a specific
category.

To begin the comparison, benchmark conditions are discussed, as follows.

4.2.3.1 Benchmark Conditions

In order to compare different classification methods and their precision, the
set of training messages was used. 80% of the messages were chosen
randomly as training instances and the other 20% for testing the system.
The current time in milliseconds was used as a randomization seed to make
sure that the 'choices were not biased toward a specific randomization seed.
Then each of the algorithms was run 100 times to get a good average and
eliminate any effects of the randomization process. After testing the use of
differing numbers of total runs by incrementing the number of runs
gradually, the results did not show any significant change as the number of
runs increased beyond 100.

The number of messages in each triage level is given in Table 7.
Obviously, these numbers vary according to triage level. This issue may bias
classifiers towards certain categories, an undesirable situation; nonetheless
this possibility is inevitable in almost all real world training data [1].

Code for these tests can be found in the main function of the code in
Appendix V. The sample output of the program that was used to generate
these results is available in Appendix VI. All of the measures used to compare
classifiers and in the following discussion are based on 100 run tests.

4.2.3.2 Classifier Confusion Matrices and Test Parameters

A classifier confusion matrix is a simple matrix representing how accurately
the classification was done, and the parameters that the tests ran. Among the
different test conditions, the different classifiers were compared using
several measures.

4.2.3.2.1 Language Model (LM) Classifier
For this algorithm one parameter, the size of the n-gram, needs to be set. As
discussed, this algorithm uses a character based n-gram to classify messages
so an appropriate size should be the average length of a word. After some
tests with different numbers (see Figure 16), 7 was chosen as the n-gram size
for the LM Classifier. This is also a good average for word length.

49

Master's Thesis - A. Tavasoli McMaster - Computer Science

(1.70

~ 0.60 a-...
:3 0.50
ru
:::I
~ OAO' .---.~"~---~ .. ~-... -.-•.. ~ .. ~,~.-.. ,-,,,,~~. ---.. ~~~-.",--.--".~

"0
~ 0.30 +--_._-_ .. -----------.---
(l)
:::I fir 0.20

~

0.1,)0 '.

1 2. ;) 4- 5 6 7 S 9 101112 is 1415 16171819 20

n-grilll1 size
Figure 16 - n-gram Size for LM Classifier Performance

..... precision

~error

The chart indicates that increasing the n-gram size beyond 7 will not
result in significant changes in classifier precision. This classifier had the
least error rate and best precision among all the classifiers used, so it was the
best single classifier of choice for this study. Table 10 shows the Confusion
Matrix for the results from this classifier in 100 runs, using an n-gram size of
7.

Response

Reference

Table 10 - Language Model (LM) Confusion Matrix (n-gram size = 7)

50

Master's Thesis - A. Tavasoli McMaster - Computer Science

4.2.3.2.2 NaiVe Bayes Classifier
This algorithm has no parameter to set. On average it demonstrated
reasonable performance. Table 11 shows the Confusion Matrix for this
classifier.

Response

Reference

4.2.3.2.3 K Nearest Neighbor (Knn) Classifier

In this classifier there are two parameters to set; one is the method of finding
the neighborhood (Le. to measure the distance between the new document
and training corpus documents used) and the other is the number k chosen
for the number of neighbors. Figure 17 shows the effect of different k on
classifier performance.

1 :2 3 4 5 1) 7 8 9 10 Ull 1314 15 16171819 20

ksize
Figure 17 - k Size to Knn Classifier Performance

51

~precl$iol1

~recall

errQr

Master's Thesis - A. Tavasoli McMaster - Computer Science

Figure 17 shows that, on balance, the best number to choose for k is 2,
since Cerr is at a minimum and precision and recall are reasonable. The
reason for this behavior is described partially on 4.2.2.5 New Proposed
Combination Method. The fact that our training corpus is small and
documents similar to the new document are more difficult to find easily,
suggests that it is better to choose a small number like 2 in this case.

After testing different distance functions like Taxicab and Minkowski
with different orders, none was superior to the classic Euclidean method.
Table 12 shows the results for different neighborhood methods with 100
runs for k=4. This k value was chosen to make the effect of neighborhood
distance function clear and measurable, while at the same time with k =4
precision and recall were still reasonable.

Distance Function Precision Recall Cerr
Euclidean .66 .53 .43
Taxicab .59 .39 .85
Minkowski order 3 .64 .51 .33
Minkowski order 4 .63 .51 .29
Minkowski order 5 0.61 .50 .29

Table 12 - Effects ofDistanceFunctLOn on Knn Classifier

The reason for this behavior might be due to the small size of the
training corpus. It is difficult to find good neighbors to new documents in this
situation. Table 13 shows the Confusion Matrix with k = 2 and with the
Euclidean distance function used to find the neighborhood.

Reference

Table 13 - Knn Confusion Matrix (k=2, Euclidean Distance)

52

Master's Thesis - A. Tavasoli McMaster - Computer Science

4.2.3.2.4 TF-IDF Classifier
The TF-IDF classifier has no parameter to set; however it is worth noting
here the reason for not using any feature reduction algorithm in this work.
After some tests it became clear that using any feature reduction method,
including TF-IDF or stop word reduction, can cause significant damage to the
system's precision. For instance using the TF-IDF filter will drop LM classifier
precision with the same n-gram size from 74% to about 50% precision. The
reason is that text documents in this case are relatively short messages which
often contain only insignificant features, and there is no perfect feature
reduction method that will not result in losing valuable features. A good
algorithm to deal with this situation is the current TF-IDF algorithm. This
algorithm does not omit any features so, if at some point a particular feature
is needed it can be used; the features are just weighted based on their TF-IDF
measures during classification. This is the main reason for this classifier's
good performance in this environment. Table 14 shows the Confusion Matrix
for this method after 100 runs.

Response

Reference b+'i"fi"i";';;"=~-+-----"---+'--'------+-~---'--'--'-+--'-----'-------l

4.2.3.2.5 Simple Voting Classifier

There is no reason to believe that the Simple Voting Classifier would work
well in any environment including this work; however it is a good
comparison point for classifier combinations. Table 15 shows the Confusion
Matrix for this method after 100 runs.

53

Master's Thesis - A. Tavasoli McMaster - Computer Science

Reference

Table 15 - Simple Voting Classifier Confusion Matrix

4.2.3.2.6 Dynamic Classifier Selection

As for the Knn Classifier, we need to select two parameters for the Dynamic
Classifier. The first is the number of neighbors k that are chosen for the local
decision set. Results are shown in Figure 18.

"0 0.60 ,I., ... ~~.~~~~~~~~~~
(!)

=+.
~ 0.50-
3
~ 0.40 .'~_·_'~> ___ ---__ ~·~'_~""'_m" __ ·~ ___ ~···"''' ___ '_~ __ ·~ __ ~">~_~"""ffi_--__ "

n
(!)

"0
(!)
-s n
fD
:::l' -!U

at!
(I)

0.30

O.lO

0.10

a.DO

1 2 ,3 4 5 5 7 8 9WU1213141516171S1920
k-size

~predsion

~recall

Figure 18 - k Dynamic Classifier Selection (DCS) Classifier Performance

Figure 18 shows that setting k = 4 will reduce the chance of a Cerr
problem, and there is a peak in chart precision and recall for this value. Note
that there were 100 runs for each value of k in the chart, so the results should
change very little for new document category selection. The second
parameter can be selected by trying different neighborhood methods to

54

Master's Thesis - A. Tavasoli McMaster - Computer Science

calculate the local neighborhood with k=4. Table 16 shows the results from
these tests.

Distance Function Precision Recall Cerr
Euclidean .73 .63 0.00
Cosine .71 .61 0.00
Taxicab .72 .61 0.00
Minkowski order 3 .72 .61 0.00

Table 16 - Different DIstance FunctIOns for Calculatmg DCS NeIghborhoods (with k=4)

It can be concluded from Table 16 that the best distance function to
use with this method is Euclidean distance with k=4. There was significant
error resistance from this method in different situations, but it demonstrated
no performance gain over the best single classifier methods which were the
LM Classifier or the Adaptive Classifier Selection methods that we tested.
Table 17 shows the Confusion Matrix for DCS, using k=4 and Euclidean
distance.

Response

Reference
4

13

Table 17 - Dynamic Classifier Selection (DCS) Confusion Matrix (k=4 and Euclidean Distance)

4.2.3.2.7 Adaptive Classifier Combination

As for Dynamic Classifier Selection, in the Adaptive Classifier Combination
there are two parameters to select; k and distance function. Figure 19 shows
the effect of changing k on this classifier's performance.

55

Master's Thesis - A. Tavasoli McMaster - Computer Science

-g 0.60 cl.,;;I!J ~.j:i
~ 3 050, ---,---,----~-----,--

ill
:l
(')
(\)

0.40

1 :£ 3 4 5 6 7 8 9 1Q 1112 13 1415 1617 1819 20

k-size

~precision

""""recall

Figure 19 - k Size to Adaptive Classifier Combination Classifier (ACC) Performance

Figure 19 demonstrates that a value of k=4 is a suitable choice, since
its precision and recall is good, and the error is 0.00. Keeping the error rate
down is essential to avoid critical errors as much as possible in the operating
environments being considered for AMT. k=4 was set to choose the best
neighborhood methods, as demonstrated in Table 18.

Distance Precision Recall Cerr
Euclidean .71 .58 0.00
Cosine .73 .65 0.00
Taxicab .67 .53 .14
Minkowski order 3 .7 .58 0.00

Table 18 - Different DIstance FunctIOns for Calculatmg ACC NeIghborhoods (k:4)

Table 18 indicates that the soft cosine distance measure seems to
have a positive effect on this classifier's performance. This effect might be
due to the unpredictable nature of the environment where a "good"
neighborhood is difficult to find for a new document. This seems to make soft
measures more powerful in choosing better neighborhoods. However, this
slight increase in performance can be overcome using the new method, to be
discussed shortly. Table 19 shows the Confusion Matrix for the adaptive
classifier selection method, with k=4 and using the cosine distance measure.

56

Master's Thesis - A. Tavasoli McMaster - Computer Science

Response

4.2.3.2.8 New Adaptive Classifier Combination

In the new adaptive classifier combination it is only necessary to choose the k
parameter, since the soft cosine measure has already been chosen. An
algorithm based on this measure was developed. Figure 20 demonstrates the
performance of this classifier for different values of k.

"'" ftl

~ ..,
3
Ql
:l
1M
fO

"'" ro ..,
1M
f'l)
:l -Ql

aq
f'l)

{LaO

0.70

0.60

0.50

0.40

{HO

(UO

0.10

0.00

~"'<" . A. .<'" .J>. A .4. . .~""
y 0/"1'" .~ --. - - -- """

_,.

~F- .. ""," 4'. I #i.'J» I c.},",;';' ~.,l':C&-"'::~ ~'--> __ ,>.~:, , ~"f'.-.-J;.' ·.Vi:;;' 1 ,»;i ",,-' .t_",,,,,_ 1';;:,-._."'~ ,;:;"4 ~ _"f"~ ~ ,,:-<,,-' ~::::,-_-... ";"It I i~""''<, I <Zo, ,

1 :2 3 .4 .5 {5 7 8 9 10111213141516171819

k-size

~- precision

-'-recall

Figure 20 - k Size to New Adaptive Classifier Combination Classifier Performance

Figure 20 can be interpreted as showing that this classifier not only
offers better performance than other methods, single or multiple, it is also
very resistant to making critical errors. The reason is that the Dynamic
Classifier Selection method always chooses one classifier to classify messages

57

Master's Thesis - A. Tavasoli McMaster - Computer Science

so it is less prone to making critical errors. The Adaptive Classifier
Combination method is also very strong in combining classifier results to get
high precision, but it is prone to making bad judgments in some situations.
Giacinto offers a good comparison of these two methods [56].

The problem with the Adaptive Classifier Combination in this case
might be seen as the "bad neighborhood". When these so called bad
neighborhoods, which are not even 50% similar to a new document, are in
the decision set, they can drive the algorithm to make critical mistakes. By
enhancing the algorithm to find neighborhoods, we can benefit from the
performance and precision of the Adaptive Classifier Combination and avoid
these errors. Error avoidance is absolutely essential to this work's
applications; by just allowing desirable "good" neighborhoods into the final
decision set, this enhances the likelihood of the correct choice. This change
makes this method better than either of the normal adaptive classifier
selection and dynamic classifier selection methods for the type of application
considered in this research. It is worth noting here that this method is a
better approximation for finding neighbors of the newly given document
although it is not mathematically the perfect solution for finding neighbors
or combining the classifiers. This method uses the cosine distance measure
that assumes the lengths of most messages are not substantially different, as
applied to our current training corpus and most other similar applications. If
length of the messages and consequently the derived vectors are
substantially different, this should also be taken into consideration. The
Confusion Matrix for this algorithm is shown in Table 20 with k=9. k=9 was
chosen because of a slight performance enhancement that the algorithm
demonstrated for this value.

Reference

Table 20 - New Adaptive Classifier Combination Confusion Matrix (k=9)

58

Master's Thesis - A. Tavasoli McMaster - Computer Science

4.2.3.3 Choosing the best method

After representing the Confusion Matrix for each method separately Table 21
compares the different classifiers at their best.

Algorithm Precision Recall Cerr Parameter
s

Language Model Classifier .739 .638 .000 n-gram = 7
NaIve Bayes Classifier .690 .582 .000 N/A
K Nearest Neighbor .643 .563 .143 K=2 using
Classifier Euclidean

distance
TF -ID F Classifier .706 .645 .143 N/A
Combination Methods3

Simple Voting Classifier .720 .621 .000 N/A
Dynamic Classifier Selection .726 .624 .000 K=4 using
Classifier Euclidean

distance
Adaptive Classifier Selection .733 .648 .000 K=4using

Cosine
similarity
measure

New Adaptive Classifier .749 .671 .000 K=9
Selection

Table 21 - Classifier Comparison

Table 21 shows further evidence of precision for the new algorithm in
finding appropriate neighborhoods for Adaptive Classifier Selection in this
environment.

3 In the version of Knn Classifier that we used in multiple classifiers, we chose k as 4 and not
2. When the Knn Classifier is combined with other classifiers its precision is a great help to
the overall system's precision, and the other classifiers can correct possible critical errors.
Selecting k as 4 is the better choice since choosing k as 2 has a negative effect on multiple
classifier performance. We selected 7 as the LM Classifier's n-gram size in multiple
classifiers, which is similar to its single classifier n-gram size.

59

Master's Thesis - A. Tavasoli McMaster - Computer Science

4.3 Connecting the Dots
After finding a good way to classify messages that suit the environment, the
remaining task is to put the appropriate components together and build the
final system. Figure 21 is the overall design of the proposed system.

Exlracting
Message
80dyand

.. Ii> Checking
for

Duplicate
Messages·

TrainIng Corpus

--Y~~~~·e , ,
I
I
I , , , , , ,

Figure 21 -Automated Message Triage Overall Design

At the centre of the AMT system is the modified Adaptive
Combination Method that uses the new neighborhood algorithm as the
classifier of choice. The system can be trained on an initial message set to
become adapted to the new environment, and it will improve over time as
more feedback is received from users. It is very dynamic. A classifier can be
omitted or be replaced by another classifier according to the environment's
need without a signifIcant change in the system. If users decide to change
categories in the system they would just need to reset the system and train it
with new categories, and the system would be ready to classify the new
categories. All in all, AMT is a fast, dynamic, accurate and error resistant
system for semantically sorting text documents.

60

Master's Thesis - A. Tavasoli McMaster - Computer Science

5. Future Work

There are several directions for moving ahead and achieving better
performance. One proven method is to add a classifier to the list· of our
classifiers that is known to work well in the environment where AMT would
be operating. If suitable to the expected environment, this new classifier
could use techniques that have been used in opinion mining, like sentimental
classification (being aware of sentimental words that are used in
classification) [4]. Adding these classifiers could only improve performance
since combining classifiers ensures that the system uses the results from the
best classifier when other classifiers fail to perform well. It is also useful to
use a classifier that not only classifies based on the words mostly used in that
specific environment; it adaptively finds out what those words are, using
techniques discussed by Sanchez-Graillet et al [52].

Because the classifier training corpuses are human readable and we
are using linear methods, one useful extension to AMT would be a program to
read the classifiers' underlying model and let users change manually how the
classifiers are trained. This option can be very useful in specialized fields like
healthcare where healthcare professionals can easily find whether a
relationship between two words is the correct one. This task can be done
automatically even if the system has a good knowledge of the nature of that
environment. For example, in healthcare if the program is able to understand
systems like Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT) [95] then it is able to use such systems to improve classifier
performance without any user feedback.

Triaging in the myBP trial included about 44% generic messages. If
the system could go one step farther to handle generic messages
automatically, it could become even more useful in areas with healthcare
professional shortages [74] or it could handle online education of patients
about their chronic diseases automatically. The AMT system can be also be
generalized to handle text messages from patient cell phones. This capability
is absolutely essential in rural areas and remote communities since it can
bring instant emergency responses to patients in need of help, and save the
time and cost of health care professionals.

Our research results could also be used in the Opinion Mining field.
The first step would be to categorize a training set of reviews based on their
importance; the resulting system could then determine the importance of
new reviews and user opinions. The system could be customized to
automatically find desirable reviews, neglecting whether they are positive or

61

Master's Thesis - A. Tavasoli McMaster - Computer Science

negative. This could then be applied to find only positive reviews or negative
ones. It would be useful to automatically select important reviews to show on
a Web product page or to sort comments mentioned on a blog post or a
product page. If user reviews needed to be triaged this system could save
much time in sorting them according to their significance.

Another interesting way to extend the system would be using the
AMT system to prioritize em ails that are sent to the user. Google recently
released Priority Inbox [96], which is a system to sort em ails based on their
importance for user. This shows how int,eresting and important this feature
is for current web users. AMT System can be trained based on priority levels
that are defined by user needs. As the user gives more and more feedback the
system can perform better at prioritizing the emails. Consequently, the AMT
system could be tailored readily to accomplish this interesting and useful
feature.

62

Master's Thesis - A. Tavasoli McMaster - Computer Science

BIBLIOGRAPHY

1. Konchady, M., Building Search Applications, Lucene, LingPipe, and Gate.
2008, Oakton, Virginia: Mustru Publishing. 430.

2. Han, J. and M. Kamber, Data mining: concepts and techniques. Second
ed. Morgan Kaufmann series in data management systems. 2006, San
Francisco: Morgan Kaufmann Publishers. xxiv, 550 p.

3. Weiss, S., Indurkhya, N., Zhang, T., Damerau, F;, Text Mining: Predictive
Methods for Analyzing Unstructured Information. 2004: Springer,
Heidelberg

4. Liu, B., Opinion Mining, in Web Data Mining. December, 2006, Springer.
p.532.

5. Ross, S.E. and C.T. Lin, The effects ofpromoting patient access to
medical records: a review. JAm Med Inform Assoc, 2003. 10(2): p. 129-
38.

6. Halamka, J.D., K.D. Mandt and P.C. Tang, Early experiences with
personal health records. Journal of the American Medical Informatics
Association: JAMIA, 2008. 15(1): p. 1-7.

7. Hall H, T.R., Health for all beyond 2000: the demise of the Alma Ata
Declaration and the primary health care in developing countries.
Medical Journal of Australia, 2003.178: p. 17-20.

8. myOSCAR Manual. 2010; Available from: http:,!,lmyoscar.org/users
manual-i.

9. U. Fayyad, G.P.-S., P. Smyth., From Data Mining to Knowledge Discovery
in Databases. Ai Magazine. 17(3): p. 37-54.

10. Feldman, R. and J. Sanger, The text mining handbook: advanced
approaches in analyzing unstructured data. 2007, Cambridge; New
York: Cambridge University Press. xii, 410 p.

11. H. Cunningham, K.B., V. Tablan, D. Maynard, H. Saggion, W. Peters, N.
Aswani, I. Roberts, A. Funk, D. Damljanovic, M. Agatonovic, T. Heitz, A.
Roberts, M. Greenwood, S. Szasz, G. Gorrell. GATE Website - General
Architecture fore Text Engineering. 2010; Available from:
wvvw.gate.ac.uk.

12. Apte, C., et al. Towards Language IndependentAutomated Learning of
Text Categorization Models. in In Proceedings of the 17th Annual
ACMjSIGIR conference. 1994.

13. Balabanovic, M. and Y. Shoham. Learning Information Retrieval Agents:
Experiments with Automated Web Browsing. 1995; 13-18]. Available
from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.132.2509.

63

Master's Thesis - A. Tavasoli McMaster - Computer Science

14. Bartell, B.T., G.W. Cottrell, and R.K. Belew, Latent semantic indexing is
an optimal special case of multidimensional scaling, in Proceedings of
the 15th annual international ACM SIGIR conference on Research and
development in information retrieval. 1992, ACM: Copenhagen,
Denmark. p. 161~167.

15. Berry, M.W., S.T. Dumais, and G.W. O'Brien, Using linear algebrafor
intelligent information retrieval. SIAM Rev., 1995. 37(4): p. 573-595.

16. J oachims, T., A Probabilistic Analysis of the Rocchio Algorithm with
TFIDF for Text Categorization, in Proceedings of the Fourteenth
International Conference on Machine Learning. 1997, Morgan
Kaufmann Publishers Inc. p.143-151.

17. Yang, Y., Expert network: effective and efficient learning from human
decisions in text categorization and retrieval, in Proceedings of the 17th
annual international ACM SIGIR conference on Research and
development in information retrieval. 1994, Springer-Verlag New York,
Inc.: Dublin, Ireland. p. 13-22.

18. Mladenic, D. Personal Web Watcher: design and implementation. 1996;
Available from:
http://citeseerx-ist.psu.edu Iviewdoc IsummaIY?doi= 10.1.1.49.2143.

19. Armstrong, R., et al. Web Watcher: A Learning Apprentice for the World
Wide Web. inAAAI Spring Symposium on Information Gathering. 1995.

20. Cohen, W.W., Learning to Classify English Text with {lLP} Methods, in
Advances in Inductive {L}ogic {P}rogramming, L. De Raedt, Editor.
1996, lOS Press. p.124-143.

21. Lewis, D. and W. Gale. A sequential algorithm for training text
classifiers. in SIGIR '94: Proceedings of the 17th annual international
ACM SIGIR conference on Research and development in information
retrieval. 1994. Dublin, Ireland: Springer-Verlag New York, Inc.

22. Pazzani, M., J. Muramatsu, and D. Billsus. Syskill & Webert:
Identifying interesting web sites. in In Proceedings of the Thirteenth
National Conference on Artificial Intelligence. 1996.

23. Sorensen, H., M. McElligott, and M. Elligott. PSUN: A Profiling System
for Usenet News (Extended Abstract). Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi::::; 1 0.1.1.51.3 2 09.

24. Aizawa, A., An information-theoretic perspective oftf-idfmeasures.
Information Processing & Management, 2003. 39(1): p. 45-65.

25. Salton, G. and C. Buckley, Term Weighting Approaches in Automatic
Text Retrieval. 1987, Cornell University.

26. Y.H. Li, A.K.J., Classification of Text Documents, in Proceedings of the
14th International Conference on Pattern Recognition-Volume 2-
Volume 2. 1998, IEEE Computer Society. p. 1295.

64

Master's Thesis - A Tavasoli McMaster - Computer Science

27. Yiming, Y. and O.P. Jan, A Comparative Study on Feature Selection in
Text Categorization, in Proceedings of the Fourteenth International
Conference on Machine Learning. 1997, Morgan Kaufmann Publishers
Inc.

28. Salton, G. and M.J. McGill)ntroduction to Modern Information
Retrieval. 1986: McGraw-Hill, Inc. 400.

29. Sch\, H., et al., A comparison of classifiers and document
representationsfor the routing problem, in Proceedings of the 18th
annual international ACM SIGIR conference on Research and
development in information retrieval. 1995, ACM: Seattle, Washington,
United States. p. 229-237.

30. Lutu, P.E.N. and AP. Engelbrecht, A decision rule-based method for
feature selection in predictive data mining. Expert Syst. Appl., 2010.
37(1): p. 602-609.

31. J. A E. Weston, AE., B. Schoelkopf, F. Perez-Cruz, Methods for feature
selection in a learning machine G. Health Discovery Corporation
(Savannah, Editor. 2009: United States.

32. Jain, A and D. Zongker, Feature selection: evaluation, application, and
small sample performance. Ieee Transactions on Pattern Analysis and
Machine Intelligence, 1997. 19(2): p. 153-158.

33. Baker, L.D. and M. Andrew Kachites, Distributional clustering of words
for text classification, in Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information
retrieval. 1998, ACM: Melbourne, Australia.

34. N. Slonim, N.T., The Power of Word Clusters for Text Classification. 23rd
European Colloquium on Information Retrieval Research, 2001.

35. David, D.L., An evaluation of phrasal and clustered representations on a
text categorization task, in Proceedings of the 15th annual international
ACM SIGIR conference on Research and development in information
retrieval. 1992, ACM: Copenhagen, Denmark.

36. David, D.L., Representation and learning in information retrieval. 1992,
University of Massachusetts: Amherst.

37. Gang, Q., et al., Similarity between Euclidean and cosine angle distance
for nearest neighbor queries, in Proceedings of the 2004 ACM
symposium on Applied computing. 2004, ACM: Nicosia, Cyprus.

38. Krause, E.F., Taxicab Geometry: An Adventure in Non-Euclidean
Geometry. New edition ed. 1987, Menlo Park, California: Dover
Publications Inc. 88.

39. Pang-Ning, T., S. Michael, and K. Vipin, Introduction to Data Mining,
(First Edition). 2005: Addison-Wesley Longman Publishing Co., Inc.

40. Charu, C.A, Towards systematic design of distance functions for data
mining applications, in Proceedings of the ninth ACM SIGKDD

65

Master's Thesis - A Tavasoli McMaster - Computer Science

international conference on Knowledge discovery and data mining.
2003, ACM: Washington, D.C.

41. Mandl, K.D., et al., Indivo: a personally controlled health record for
health information exchange and communication. Bmc Medical
Informatics and Decision Making, 2007. 7: p.-.

42. Pedro, D. and P. Michael, On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss. Mach. Learn., 1997. 29(2-3): p. 103-
130.

43. Yiming, Y. and G.C. Christopher, An example-based mapping method for
text categorization and retrieval. ACM Trans. Inf. Syst., 1994. 12(3): p.
252-277.

44. Genkin, et al., Large-Scale Bayesian Logistic Regression for Text
Categorization. Technometrics, 2007.49(3): p. 291-304.

45. Hinrich, S., et al., A comparison of classifiers and document
represen tations for the routing problem, in Proceedings of the 18th
annual international ACM SIGIR conference on Research and
development in information retrieval. 1995, ACM: Seattle, Washington,
United States.

46. Wiener, E., J. Pedersen, and A Weigend. A neural network approach to
topic spotting. in Proceedings ofSDAIR-95, 4th Annual Symposium on
Document Analysis and Information Retrieval. 1995.

47. Miguel, E.R. and S. Padmini, Hierarchical neural networksfor text
categorization (poster abstract), in Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in
information retrieval. 1999, ACM: Berkeley, California, United States.

48. Huang, C.-L. and c.-J. Wang, A GA-based feature selection and
parameters optimizationfor support vector machines. Expert Systems
with Applications, 2006. 31(2): p. 231-240.

49. Tai-Yue, W. and C. Huei-Min, Fuzzy support vector machine for multi
class text categorization. Inf. Process. Manage., 2007. 43(4): p. 914-
929.

50. Timo Koski, J.M.N., Bayesian Networks - An Introduction. Wiley series
in probability and statistics. 2009: John WHey & Sons, Ltd.

51. Mieczys, AK. aw, and opotek, Very large Bayesian multinets for text
classification. Future Gener. Comput. Syst., 2005.21(7): p. 1068-1082.

52. O. Sanchez-Graillet, M.P., Acquiring Bayesian Networks from Text, in
Proceedings of LREe. May 2004: Lisbon.

53. Sandeep, R. Bridging Text Mining and Bayesian Networks. 2009.
54. Cohen, W. Text Categorization and Relational Learning. in In

Proceedings of the Twelfth International Conference on Machine
Learning. 1995.

66

Master's Thesis - A. Tavasoli McMaster - Computer Science

55. Cohen, W. and Y. Singer. Context-Sensitive Learning Methods for Text
Categorization. in Acm Transactions on Information Systems. 1996.

56. Giacinto, G. and F. Roli, Adaptive selection of image classifiers, in Image
Analysis and Processing, A. Del Bimbo, Editor. 1997, Springer Berlin /
Heidelberg. p. 38-45.

57. Hansen, L.K and P. Salamon, Neural Network Ensembles. IEEE Trans.
Pattern Anal. Mach. Intell., 1990.12(10): p. 993-1001.

58. Giacinto, G. and F. Roli, Dynamic Classifier Selection, in Multiple
Classifier Systems. 2000, Springer Berlin / Heidelberg. p. 177-189.

59. Woods, K, K Bowyer, and W.P. Kegelmeyer, Jr. Combination of
multiple classifiers using local accuracy estimates. in Computer Vision
and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE
Computer Society Conference on. 1996.

60. Jianpei, Z., C. Lili, and M. Jun,A New Multiple Classifiers Combination
Algorithm, in Proceedings of the First International MUlti-Symposiums
on Computer and Computational Sciences - Volume 2 (IMSCCS'06) -
Volume 02. 2006, IEEE Computer Society.

61. Leah, S.L. and W.B. Croft, Combining classifiers in text categorization, in
Proceedings of the 19th annual international ACM SIGIR conference on
Research and development in information retrieval. 1996, ACM: Zurich,
Switzerland.

62. Giacinto, G. and F. Roli, Dynamic Classifier Selection based on Multiple
Classifier Behaviour. Pattern Recognition, 2001. 34: p. 1879-1881.

63. Huang, Y.S. and c.Y. Suen,A Method of Combining Multiple Expertsfor
the Recognition of Unconstrained Handwritten Numerals. IEEE Trans.
Pattern Anal. Mach. Intell., 1995.17(1): p. 90-94.

64. Saerens, M. and F. Fouss, YetAnother Methodfor Combining Classifiers
Outputs: A Maximum Entropy Approach, in Multiple Classifier Systems,
F. Roli, J. Kittler, and T. Windeatt, Editors. 2004, Springer Berlin /
Heidelberg. p. 82-91.

65. Yang, Y., An Evaluation of Statistical Approaches to Text Categorization.
Information Retrieval, 1999. 1(1): p. 69-90.

66. McKeown, K, et al. Tracking and Summarizing News on a Daily Basis
with Columbia's Newsblaster. 2002; Available from:
http://citeseerx.ist.psu.edu/viewdoc/snmmary?doi:::l0.1.1.11.9542.

67. Sable, C. and K Church. Using Bins to Empirically Estimate Term
Weights for Text Categorization. in In Proceedings of the 2001
Conference on Empirical Methods in Natural Language Processing
(EMNLP-01.2001.

68. Collaboration, Electronic messaging, Anti-Abuse and Spam Conference
[formerly the Conference on Email and Anti-Spam] CEAS. 2010;
Available from: http://ceas.cc.

67

Master's Thesis - A. Tavasoli McMaster - Computer Science

69. Thunderbird. 2010; Available from:
http://www.mozillamessaging.com/en-US Ithunderbird I.

70. Graham, P. Better bayesian filering. in Proceedings of the 2003 Spam
Conference. 2003.

71. Gerber, T., et al., An agenda for action on global e-health. Health affairs,
2010.29(2): p. 233-6.

72. Kristiina, H.y., S. Kaija, and N.n. Pirkko, Definition structure, content,
use and impacts of electronic health records: A review of the research
literature. International Journal of Medical Informatics, 2008. 77(5): p.
291-304.

73. Tang, P.c., et al., Personal Health Records: Definitions, Benefits, and
Strategies for Overcoming Barriers to Adoption. Journal of the
American Medical Informatics Association, 2006.13(2): p. 121-126.

74. Ross, S.J., D. Polsky, and J. Sochalski, Nursing shortages and
international nurse migration. Int Nurs Rev, 2005. 52(4): p. 253-62.

75. Minqing Hu, B.L., Mining opinion features in customer reviews, in
Proceedings of the 19th national conference on Artifical intelligence.
2004, AAAI Press: San Jose, California.

76. Peter, D.T., Thumbs up or thumbs down?: semantic orientation applied
to unsupervised classification of reviews, in Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics. 2002,
Association for Computational Linguistics: Philadelphia, Pennsylvania.

77. Kushal, D., L. Steve, and M.P. David, Mining the peanutgallery: opinion
extraction and semantic classification of product reviews, in
Proceedings of the 12th international conference on World Wide Web.
2003, ACM: Budapest, Hungary.

78. M. Hu, B.L. Opinion Feature Extraction Using Class Sequential Rules. in
In Proc. of the Spring Symposia on Computational Approaches to
Analyzing Web logs (AAAI-CAAW-06). 2006.

79. Ee-Peng Lim, V.-A.N., Nitin Jindal, Bing Liu and Hady Lauw, Detecting
Product Review Spammers using Rating Behaviors, in The 19th ACM
International Conference on Information and Knowledge Management
(CIMK-2010,JuU paper). 2010: Toronto, Canada.

80. Norm Archer, U.F.-T., An Empirical Study of Canadian Consumer and
Physician Perceptions of Electronic Personal Health Records, in ASAC
2010 Conference. 2010: Regina, Sask.

81. Patient SelfManagementApproachfor Hypertension Using Personal
Electronic Health Records (myBPJ unpublished paper. 2010,
Department of Family Medicine at McMaster University: Hamilton,
Ontario.

82. Bodenheimer, T., et al., Patient self-management of chronic disease in
primary care. JAMA, 2002. 288(19): p. 2469-75.

68

Master's Thesis - A. Tavasoli McMaster - Computer Science

83. Care, M.o.H.a.L.-T. Chronic Disease Prevention and Management. May
2007; Available from:
11 ttp: / Iwww.health.gov.on.ca/englis h/providers/program I cdpm/ ind
ex.html.

84. OSCAR Canada Users Society Website. 2010; Available from:
http://www.oscarcanada.org/.

85. The Perl Programming Language. Available from:
http://www.perl.org,l.

86. Symptoms ofHypertention. Available from: http://www.symptoms-of
hypertensio n.com,l.

87. Baesens Bart, K.U.L., Martens David, Setiono Rudy, Zurada Jacek"
Special issue on white box nonlinear prediction models. IEEE
Transactions on Neural Networks, 2010. 21(3): p. 527-527.

88. Ian H. Witten, E.F., Introduction to Weka, in Data Mining: Practical
Machine Learning Tools and Techniques. 2005.

89. Carpenter, B. LingPipe - a suite oflava libraries for the linguistic
analysis of human language. Available from: http://alias-
Lcom Ilingpipe,!.

90. Language Modeling for Speech Recognition - Microsoft Research.
Available from: http://research.microsoft.com/en
us/projects/language-modelingjdefault.aspx.

91. Lena Tenenboim, B.S., Peretz Shova!, Ontology-Based Classification Of
News In An Electronic Newspaper, in International Conference
"Intelligent Information and Engineering Systems" INFOS 2008: Varna,
Bulgaria.

92. Peng, F., D. Schuurmans, and S. Wang, Language and task independent
text categorization with simple language models, in Proceedings of the
2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology - Volume 1.
2003, Association for Computational Linguistics: Edmonton, Canada.
p.ll0-117.

93. LingPipe 4.0 API Documentation UavafJoc). 2010; Available from:
http://alias-Lcom/lingpipe / docs/api lindex.html?overview
summary.html.

94. Micciancio, D., Closest Vector Problem, in Encyclopedia of Cryptography
and Security, H. Tilborg, Editor. 2005, Springer US. p. 79-80.

95. SNOMED CT (Systematized Nomenclature of Medicine-Clinical Terms)
Available from: http://www.ihtsdo.org/snomed-ct!.

96. Gmail Priority Inbox - Get through your email faster. Available from:
http://maiLgoogle.com/mailfhelp/priority-inbox.html.

69

Master's Thesis - A. Tavasoli McMaster - Computer Science

Appendices

Appendix I
Actions taken in myBP study on different situations:

Perform daily checks using the "Report: BP entries" function Survey
Administration in MyOSCAR to determine which patients have not
entered any BP values in the past 7 days.
For patients who have entered BP values, review the values they have
entered by viewing their MyOSCAR record

Patients will be sent a message based on their BP reading once per week
unless their BP reading is greater than 179/109 mmHg*; the message
will be based on their highest reading of the week
o Iftheir highest reading is <140/90 mmHg (or <130/80 mmHg if

patient has diabetes), a Congratulatory message is to be sent:
IIGreat job on continuing to monitor your blood pressure! Your blood
pressure reading on [date] was [reading], which is below your blood
pressure target. Congratulations!"

o If their highest reading is between 141/91 mmHg and 179/109
mmHg, please send them this message:
IICongratulations on continuing to monitor your blood pressure!

Your blood pressure reading on [date] was [readingJ please checkyour
blood pressure again in the next few days. If your blood pressure is still
in this range, you should make an appointment to see your family
physician within the next week."

*Iftheir daily blood pressure reading was between than 180/110 to
209/119 mmHg, send a message to them the same day. The message
should read:
'Tour blood pressure reading on [date] was [reading],you should make an
appointment to see your family physician within the nextfew days. I will
follow-up withyou to ensure you have made this appointment. If you are
concerned about your blood pressure reading, urgent study support can be
reached at 416-464-3995"

*If their daily blood pressure reading was higher than 210/120 mmHg,
send a message to them the same day. The message should read:

70

Master's Thesis - A. Tavasoli McMaster - Computer Science

"Your blood pressure reading on [date] was [reading], you should arrange a
same day appointment with your family physician or go to the emergency
room. If you are concerned about your blood pressure reading, urgent study
support can be reached at 416-464-3995"

Reminder Messages for Entry orBP Readings
1. If patients have not entered a blood pressure reading within the past 7

days, send a Reminder message (BP Monitoring Reminder Message)
2. Ifthe first reminder sent to a patient does not lead to the patient entering

a BP reading within 3 days, a second reminder email will be sent to the
patient. (BP Monitoring Reminder Message)

3. If the patients still has not entered a BP reading another 3 days, a third
reminder email will be sent. (BP Monitoring Reminder Message)

4. Reminder emails will be sent every 7 days thereafter until the patient
enters a BP reading. (BP Monitoring Reminder Message)

71

Master's Thesis - A. Tavasoli McMaster - Computer Science

Appendix II

A sample of the XML in the raw myBP study messages

<?xml version=""l.O"" encoding=""UTF-8""standalone=""yes""?>
<ns2:IndivoDocument
xmlns:ns2=""http://indivo.org/xml/phr/document"">
<ns2:DocumentHeader>

<Author>
<Indivold>project.support@myoscar.org</Indivold>
<Name>XXX</Name>
<Role>provider</Role>

</Author>

<ns2:DocumentClassification>
<Classification>urn:org:indivo:document:classification:messa

ge</Classification>
</ns2:DocumentClassification>

<ns2:ContentDescription>
<ContentType
xmlns:ns3=""http://indivo.org/xml/phr/message"">ns3:Message</Conte
ntType>
</ns2:ContentDescription>

<Active>true</Active>
</ns2:DocumentHeader>

<ns2:DocumentVersion>
<ns2:VersionHeader>

<VersionAuthor>
<Indivold>project.support@myoscar.org</Indivold>
<Name>XXX</Name>
<Role>provider</Role>

</VersionAuthor>
</ns2:VersionHeader>

<ns2:VersionBody>
<ns2:Message xmlns:ns2=""http://indivo.org/xml/phr/message"">

<Recipient> 1-2-24@myoscar.org</Recipient>
<Subject>Cardiovascular risk factor survey </Subject>
<ContentType>ns2:TextMesage</ContentType>
<Read>false</Read>
<Replied>false</Replied>
<MessageContent>
<ns2:TextMessage>
Dear XXX,

72

Master's Thesis - A. Tavasoli McMaster - Computer Science

Creating an action plan is great way to get the process
started to control your blood pressure! Please complete the Blood
Pressure Risk Assessment Survey so you can identify which
lifestyle factors you should to target for your personal action
plan.

We also ask that you complete Medication Use Survey that is
in the Survey list.

Thank you,

Project Support
</ns2:TextMessage>
</MessageContent>

</ns2:Message>
</ns2:VersionBody>

</ns2:DocumentVersion>
</ns2:IndivoDocument>

Please note that the nn's that appear everywhere are actually carriage
returns (enters).

73

Master's Thesis - A. Tavasoli McMaster - Computer Science

Appendix 11/

For detecting names, addresses and other private information, GATE (General
Architecture for Text Engineering) [11] , is a very useful free, open source,
user friendly, text mining tool. Using this tool is described fully in GATE's
website [11]. This is a short introduction about how we used GATE was used
to find private information in messages.

The opening GATE screen looks like this.

i····* Processing Resources

L " Datastores

and using Java 1.6.0_20 Sun Microsystems Inc. on Windows XP x86 5.1.

Figure 22 - GATE Opening Screen

The text documents are first added as a corpus to the program, by
right clicking Language Resources, selecting New Document and adding a
document to GATE. A new corpus is built by drag-and-dropping that
document in the corpus, until all documents are added to the corpus.

74

Master's Thesis - A. Tavasoli McMaster - Computer Science

[~ ~ Applications

+_ .• 14 Language Resources

j ... <f.P sample.tx\...0001A

!l~·.
iii * Processing Resources

L.II Datastores

Figure 23 - GATE with Document Corpus

Then the ANNIE application was added to the program by selecting it
from File-> Load ANNIE System ... ->with defaults. After doing so the ANNIE
application was selected and ran on the current corpus.

75

Master's Thesis - A. Tavasoli McMaster - Computer Science

Figure 24 - Running ANNIE in GATE

76

Master's Thesis - A. Tavasoli McMaster - Computer Science

name is i\f(\j1,Tiivasdll, a stu
'!visited ~llJO:~'i\ Smilh
his suggestion about a specific drug. .. arrange to

I know about that drug and reply to me whelher I can take
drug With food or not

o Location

~ w:l~lf~~~~I~~
RI """'on.····/··./

El §l!l~tti~[~jf:ti

o

D~~~f!~! Elrf1~~t;
D-"' " .. " .. ,.>
~ Original markups

After finding this private information, the final step is to eliminate it
from the entire corpus. A very simple solution was to run a simple Perl[85]
script as follows to clear private information from the document:

#! /usr/bin/perl

@file list = 'ls inputxmls/'i

foreach $file(@file_list)
print" => $file\n"i

open (XMLFILE, "inputxmls/$file") I I die("Cannot open $file!")i

$output_filename = "cleanedxmls/$file"i
open (OUTFILE, "» cleanedxmls/$file")i

#find "" patterns and replace it with"
while ($ = <XMLFILE»
{

s/Amir Tavasoli/XXX/gi
s/Amir/XXX/gi
s/Tavasoli/XXX/gi
s/McMaster/XXX/gi

print OUTFILE i

77

Master's Thesis - A. Tavasoli McMaster - Computer Science

close (XMLFILE) I I die("Cannot close $file!"};
close (OUTFILE) I I die("Cannot close cleanedxmls/$file!"};

78

Master's Thesis - A. Tavasoli McMaster - Computer Science

Appendix IV

Table of conflicts between message triage levels chosen by the two nurses.
Note that the nn's that appear are actually carriage returns (keyboard
Ilenters").

Re:
Cardiova

scular
risk

factor
survey

Hi n nMy replies to
those questions are: 35
b 36 b 37 a. n nHope

that finishes it. Thanks. N
nxxx

2

79

3 3

It is just a survey and
it does not need to
be answered in 24

hours.

Master's Thesis - A. Tavasoli

Re: BP
readings
on week

13

Re:BP
reading
on week

19

I was just wondering
when the survey ends.

Thanks xxx

Hi my blood pressure
readings have bee pretty
well the same. As usual I
keep forgetting to mail

them on to you. nl must
apologise for missing the
meeting last night. We

had a bit of a family
emergency spent the
day in Burlington and I

completely forgot about
the meeting. nSorry

about that. Nxxx

McMaster - Computer Science

2 4 4 Duplicate

2 4 4 Duplicate

80

Master's Thesis - A. Tavasoli

Re:
Action

plan
Survey 3

reminde

Hi n nl've seen the
cardiovascular risk

profile name under
documents but when I

click it nothing happens.
I can not open it. I've
tried that on different

days but it hasn't
opened so far. Sorry! N

nxxx
>': ,':;··tE:\~ ::- '-=;"':<:.,,;:;

·,,;r~~~qll.iY;:~~~it.iOh.iSh(Jy./::
'tgtlie,theYl)av¢n';J·stJt./n:
" ""the,~edicatio~stn~h>

"'''''~''''''' ,I···,>'us.e y~t;:){,&'~:,J.,./<

help

Having problems with
the mybp page again.
Cannot get into the

other system or use the
calendar in it. So in this
system the mybp into is
missing. nCan you help?

2 4

2 3

81

McMaster - Computer Science

4

2

Duplicate

Agree with nurse
comment "There is

technical problem
relating to BP entry
that I think should
be fix within 24 hrs

since patient is
concern and willing

to enter BP

Master's Thesis - A. Tavasoli

Re:
Exercise

diary
reminde

my
appoint
ment on
the i h

Sorry I made a schedule
as you sent. I thought it

was a sample. I will try to
fill it in from what I

recall. N nxxx

I would like to move the
apt time from June i h

to another date If I can
get the phone no of

Project Support I woulf
appreciate or have her

call me n nThanking you

2

3

82

3

4

McMaster - Computer Science

3

4

72 hours should be
enough

Duplicate

Master's Thesis - A. Tavasoli

change
of times
for xxx

bp

Re:Your
Personal
Action

Plan and
Exercise

Diary

HI for XXX RE;
appointment STONE

CHURCH MED CNTR TUE
JULY 7 for XXX 3.30pm

family matters have
come to unable to keep

n aptm could we
please book another one

sorry for any
83nterference n
XXX xxx-xxx-xxxx

THANK YOU!!

Is it always best to take
my bp after sitting

quietly or before doing
any walking/housework

etc:?

Hi n nThank you for the
Exercise Diary. I'll try
using that. I tried to

open the Personal Action
Plan and got a statement

that it could not do
certain parts; all it gave
me was about ten lines

of info. Was there more?
N nxxx

3 2

3 2

3 4

83

McMaster - Computer Science

2

2

4

Better to be dealt in
24 hours

Quiet important to
be answered in 24

hours

Duplicate

Master's Thesis - A. Tavasoli

Re:
Cardiova

scular
risk

factor
survey

Hi n nl get to answer
three questions I

suppose the three I
apparently didn't answer

the first time. It then
tells me I can't finish the

3

84

McMaster - Computer Science

4 4 Duplicate

Master's Thesis - A. Tavasoli McMaster - Computer Science

I've been pleased with
my progress and choices
over the past week. I've
been able to log most or
all of my food intake on
most days. I have mostly

been meeting my
objectives for lots of

fruits &amp;
vegetables low-fat foods
and water. My weight is

Re:BP
finally dropping a couple

reading
of pounds. I've been

on week
walking 6 500 - 10 000 4 3 3 Duplicate

4
steps a day over the past

week. And my blood
pressure is coming down

a few points. Now 11m
looking forward to

seeing it in the target
range. Thanks for this

program which is giving
me a way to measure my

progress especially in
such a visible tangible
way as the BP chart.

xxx n
Table 22 - Resolvmg Differences Between Message Triage Levels Chosen by Two Nurses

The following table contains messages that were simulated to accommodate
the shortage of level 0 and level 1 messages.

85

Master's Thesis - A Tavasoli McMaster - Computer Science

2

4

6

Hi, Last night when I wanted to go to sleep I had bad nausea and I
woke up in the middle of night vomiting badly. Now I have just

wake up from sleep and I can't see the things around clearly. I took
my blood pressure and it was pretty high. I wanted to know if y~u

can suggest anything to me. Thanks, XXX

Hello, I am a little bit nurvous. I feel very bad headache and
chestpain. Yesterday my blood pressure was pretty high. It was

around 160/130.1 am alone in the house and I think I need to go to
a hospital but I wanted to make sure if I really need to do so.

Regards, XXX

I did some light exercise today, but after a few minutes I had
shortness in breath.1 have a some chestpain and headache also. I
took my blood pressure and it was exteremly high. I tried to call
my doctor but he was not available. Is there anything that I need

to do? Thanks, XXX

86

o

o

o

Master's Thesis - A. Tavasoli McMaster - Computer Science

8

10

16

I took my blood pressure in the morning and it was really high.
Then I took my medicine as my doctor told me. After a few hours

my blood pressure is still elevated. I have problems eating and I am
alone in the house. Can you tell me what should I do? Thank You,

XXX

This morning when I woke up I couldn't find my blood pressure
device. My blood pressure records was unsteady during the past

few weeks. This mornin-g I have some blured vision and I have
problems typing this message. Do you have any suggestions,

Thanks, XXX

My blood pressure is usually high but since this morning it has
been increasing rapidly. I cannot breathe very well now and I feel

pain in my chest. What should I do?

Hello nl check my blood pressure every day and it is usually 150/80

o

o

mmHG, but it's more than a week now that it stays around 175/80. 0
Should I be concerned about and see a doctor?

I am in a very bad situation today. My blood pressure is really high.
I don't know what is the best thing to do. I wanted to ask if there is

any suggestions from you.

87

o

Master's Thesis - A. Tavasoli McMaster - Computer Science

18

"'~~'sAffi~"ch~$r:pa
W~·~jj4~t.\'N()~~~.t1
. ····.:,~'::':Ja kedxxk

., "+:;:-::.~'; :;. ,", :"::

I don't know what's happening with my blood pressure device.
From yesterday the device started to show very contradicting

numbers. I feel dizzy and I have problem with my eys sight. But the
device does not show a credible number. Can you help me with my

blood pressure readings? Thanks, XXX

I have some stomach problems. I don't know whether they relate
20 to hypertention or the food. I also feel dizzy and have some

headache. I just wanted your idea about it. Thank You, XXX.

22

24

I have issues using myBP. Instead 140/120 I entered 120/90 in my
records and I don't know how to change it. I don't know if it has

any effects on my action plan. And note that I have a slight
headache and my eye sight is a little bit blurry this morning.

88

o

1

Master's Thesis - A. Tavasoli McMaster - Computer Science

26

34

, -'---.' -

~~;<F:;;:::':;;::;:-: -,- -- ~; .. '~ .:;..- -j' ~~,:~

As of this morning I felt a little bit dizzy. I never felt this way before
and this is the first time during the study that I have this feeling. I

have a slight headache and I wanted to know if I am doing
anything wrong.

I couldn't keep up with my action plan and I had pretty heavy pizza
yesterday. I have a slight nausea and feel some headache. My
blood pressure is higher than yesterday. Is everything is ok?

Last week I was going with my action plan and everything was ok.
However, from this morning I feel a slight headache and my blood
pressure has been elevated. I don't know what I did wrong. Can

you help me.

I cannot stop the headache started 2 days ago. I can take my
normal actions but the headache won't go away. I haven't tested
my blood pressure in these two days. Can you tell me what is the

best thing to do?

I think I need to talk to a doctor about my problem. I try to follow
my action plan but I still have high blood pressure and it does not
go down. I have a slight headache as of this morning. Thanks, XXX

89

1

1

1

Master's Thesis - A. Tavasoli McMaster - Computer Science

36

38

40

Eveything was ok last week but from this week my blood pressure
device is showing elevated numbers. My condition is almost ok
despite some unsteady headaches. Can you help me with my

situation.

When I woke up yesterday, I had a slight headache. I ignored it for
the day and by the afternoon it seem to be better but again todays
morning the headache came back. My blood pressure seem to be

elevated also. What I need to do?

I woke up last night during the night I felt a slight headache, I took
my blood pressure and it was pretty high. Then took my

medication and I was able to sleep. In the morning when I took my
blood pressure it seems to be quiet ok. Now tonight I again feel
the headache. Can you help me with my situation. Regards, XXX

Table 23 - Messages Simulated to Overcome Lack of Level 0 and Level 1 Messages

90

1

1

1

Master's Thesis - A. Tavasoli McMaster - Computer Science

Appendix V

This is the implementation of the classifiers mentioned in this work. This
code was implemented using Java and Eclipse IDE (www.eclipse.org).

The first part of the code includes the added function KnnClassijier
Class, used to determine the neighborhood of a given document.

public ArrayList<ScoredObject<Pair<String,Integer»>
returnNeighbours(E in,

String Docname, Integer numNeighbours, int type)
Map<String,? extends Number> featureMap

= mFeatureExtractor.features(in);
SparceFloatVectorWithDocname inputVector

Features.toVectorWithDocnameAddSymbols(featureMap,
mFeatureSymbolTable,
Integer.MAX_VALUE-1,
false,
Docname);

EuclideanDistance ed = null;
if(type == 0) {

ed = new EuclideanDistance();

CosineDistance cd = null;
if(type == 1 I I type == 2)

cd = new CosineDistance();

TaxicabDistance td = new TaxicabDistance();
MinkowskiDistance md = new MinkowskiDistance(3);

BoundedPriorityQueue<ScoredObject<Pair<String,Integer»> queue
= new

BoundedPriorityQueue<ScoredObject<Pair<String,Integer>»(
ScoredObject.comparator(), numNeighbours l*mK*/);

for (int i = 0; i < mTrainingCategories.size(); ++i)
Integer catId = mTrainingCategories.get(i);

SparceFloatVectorWithDocname trainingVector
mTrainingVectors.get(i);

IIIIII Different ways to build neighborhood
double score = 0.0;
IIEuclidean Distance
if(type == 0) {
score = (1.0/(1.0

+ed.distance(inputVector, trainingVector)));

91

Master's Thesis - A. Tavasoli

//Cosine Distance
H(type == 1) {

score = (1.0/(1.0

McMaster - Computer Science

+cd.distance(inputVector, trainingVector)))i

if(type == 2) {
score = cd.proximity(inputVector, trainingVector);

//Taxicab Distance
if (type==3) {

score = (1.0/(1.0+
td.distance(inputVector, trainingVector)))i

//Minkowski Distance
if (type==4) {

score (1.0/ (1.0+
md.distance(inputVector, trainingVector)))i

}

//build a vector of biggest proximity
queue.offer(new ScoredObject<Pair<String, Integer»(
new Pair (trainingVector.DocumentName , catId),score));

ArrayList<ScoredObject<Pair<String,Integer»> output
= new ArrayList<ScoredObject<Pair<String,Integer»>()i

while(!queue.isEmpty()) {
output.add(queue.remove())i
}

return outputi

public Vector returnVector(E in, String Docname)
Map<String,? extends Number> featureMap

= mFeatureExtractor.features(in)i
return (Vector)Features.toVectorWithDocnameAddSymbols(featureMap,

mFeatureSymbolTable,
Integer .MAX~ VALUE-I,
false,
Docname) i

There are some minor edits in other parts of the class to save the
document name (not mentioned here).

Some minor edits were used on the Features class to allow this class
to retrieve the names of documents. Document names were used to calculate
the neighborhood of a given document.

92

Master's Thesis - A. Tavasoli McMaster - Computer Science

public static SparceFloatVectorWithDocname
toVectorWithDocnameAddSymbols(Map<String,? extends Number>

featureVector,
SymbolTable table,
int numDimensions,
boolean addlntercept,
String Docname) {

int size (featureVector.size() * 3) / 2;
Map<Integer, Number> vectorMap

= new HashMap<Integer, Number>(size);
for (Map.Entry<String, ? extends Number> entry

: featureVector.entrySet()) {
String feature = entry.getKey();
Number val = entry.getValue();
int id = table.getOrAddSymbol(feature);
vectorMap.put(Integer.valueOf(id), val);

if (addlntercept)
vectorMap.put(Integer.valueOf(O), 1.0);

return new SparceFloatVectorWithDocname(vectorMap,
numDimensions, Docname);

A new class was added to test the documents and group them into test
or train groups

package classifiers;

import java.io.File;

enum FileState {Test, Train};

public class FileBinayType {
public File file;
public FileState state;

FileBinayType(File f,FileState s)
{

file = f;
state = s;

The main part of the code, which includes all the work with classifiers
and LingPipe Library, is followed. It is worth mentioning that the codes for
individual classifiers have been adapted from [1].

package classifiers;

import java.io.*;
import java.util.*;

93

Master's Thesis - A. Tavasoli McMaster - Computer Science

import com.aliasi.classify.*;
import com.aliasi.matrix.CosineDistance;
import com.aliasi.matrix.EuclideanDistance;
import com.aliasi.matrix.MinkowskiDistance;
import com. aliasi .matrix. TaxicabDistance; "
import com.aliasi.spell.TfldfDistance;
import com.aliasi.tokenizer.*;
import com.aliasi.util.Files;
import com.aliasi.util.BoundedPriorityQueue;
import com.aliasi.util.Pair;
import com.aliasi.util.ScoredObject;

public class compare {
private static String FS =

System. getProperty (" file. separator") ;
private static File ORIGINAL_DIR = new File (" ./original");
private static float PRCNT_TEST = (float) 0.2;
private static String modelFileDir =

ORIGINAL DIR + FS + "training_files" + FS;
private static String[] CATEGORIES

{"levelO", "level1", "leve12", "leve13"};
private static int NUM_RUNS = 100;

//
///////!//
//////////// New Classifier
//
II/III/III
public static void trainNewClassifier(Vector<Vector> mainVector,

String lmModelFile, String knnModelFile,
String navieBayesModelFile, String tfidfModelFile,
int K_SIZE, int NGRAM_SIZE) (

//Language Model Classifier
DynamicLMC1assifier lmclassifier
DynamicLMClassifier.createNGramBoundary(CATEGORIES,

NGRAM_SIZE);

//Knn Classifier
KnnClassifier<CharSequence> knnclassifier=

new KnnClassifier<CharSequence> (
new TokenFeatureExtractor(
new IndoEuropeanTokenizerFactory()), K_SIZE,
new EuclideanDistance());

//Navie Bayes Classifier
NaiveBayesClassifier naivebayesclassifier

new NaiveBayesClassifier(CATEGORIES,
new IndoEuropeanTokenizerFactory());

//TF-IDF Classifier
TfldfClassifierTrainer<CharSequence> tfidfclassifier new

TfldfClassifierTrainer<CharSequence>

94

Master's Thesis - A. Tavasoli McMaster - Computer Science

new TokenFeatureExtractor(
new IndoEuropeanTokenizerFactory()));

try {
for(int i=O;i<CATEGORIES.length; i++) {

Vector<FileBinayType> catVect mainVector.get(i);

for(FileBinayType tf : catVect)
if(tf.state != null && tf.state == FileState.Train) {

String text = Files.readFromFile(tf.file,"UTF-S");

lmclassifier.train(CATEGORIES[i], text, NGRAM_SIZE);
knnclassifier.handle(new Classified(text,

new Classification(CATEGORIES[i])) ,
tf.file.getName());

naivebayesclassifier.train(CATEGORIES[i], text,
refinedText.length());

tfidfclassifier.handle(new Classified(text,
new Classification(CATEGORIES[i])));

ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream(lmModelFile));

lmclassifier.compileTo(os);
os.close();

os = new ObjectOutputStream(
new FileOutputStream(knnModelFile));

knnclassifier.compileTo(os);
os.close();

os = new ObjectOutputStream(
new FileOutputStream(navieBayesModelFile));

naivebayesclassifier.compileTo(os);
os.close();

os = new ObjectOutputStream(
new FileOutputStream(tfidfModelFile));

tfidfclassifier.compileTo(os);
os.close();
}

} catch(IOException e)
e.printStackTrace();

1111111111111111
public static ConfusionMatrix testDynamicClassiferSelection(
Vector<Vector> mainVector, String lmModelFile, String
knnModelFile,
String navieBayesModelFile, String tfidfModelFile)

95

Master's Thesis - A. Tavasoli

ConfusionMatrix confMatrix =

new ConfusionMatrix(CATEGORIES);
try {

//LM Classifier

McMaster - Computer Science

ObjectlnputStream oi = new ObjectlnputStream(
new FilelnputStream(lmModeIFile));

LMClassifier ImCompiledClassifier =
(LMClassifier) oi.readObject();

oi.close();

//Knn Classifier
oi = new ObjectlnputStream(
new FilelnputStream(knnModelFile));

KnnClassifier<CharSequence> knnCompiledClassifier
(KnnClassifier<CharSequence» oi.readObject();

oi.close();

//Navie Bayes Classifier
oi = new ObjectlnputStream(

new FilelnputStream(navieBayesModeIFile));

LMClassifier naiveBayesCompiledClassifier
(LMClassifier) oi.readObject();

oi. close () ;

//TF-IDF Classifier
oi = new ObjectlnputStream(

new FilelnputStream(tfidfModeIFile));

BaseClassifier tfidfCompiledClassifier
(BaseClassifier) oi.readObject();

oi . close () ;

for(int i=O;i<CATEGORIES.length; i++) {
Vector<FileBinayType> catVect mainVector.get(i);
String text;
for(FileBinayType tf : catVect)

if(tf.state != null && tf.state == FileState.Test)
text = Files.readFromFile(tf.file,"UTF-8");

//Find K nearest neighbor of the sample that we want
to classify

ArrayList<ScoredObject<Pair<String, Integer»>
ScoredNeighbors = knnCompiledClassifier.

returnNeighbours((CharSequence) text, tf.file.getName(), 4, 0);

ConfusionMatrix 10calLMConfMatrix
new ConfusionMatrix(CATEGORIES);

96

Master's Thesis - A. Tavasoli McMaster - Computer Science

ConfusionMatrix 10calKNNConfMatrix
new ConfusionMatrix(CATEGORIES);

ConfusionMatrix localNBConfMatrix
new ConfusionMatrix(CATEGORIES);

ConfusionMatrix 10calTFIDFConfMatrix
new ConfusionMatrix(CATEGORIES);

for(int p = O;p < ScoredNeighbors.size();p++)
ScoredObject<Pair<String,Integer» so =

ScoredNeighbors.get(p);

int 10calCatID = so.getObject() .b();
String docname = so.getObject() .a();
//Find how our classifiers classify that sample
File subFile = new File(ORIGINAL_DIR + FS +

CATEGORIES[localCatIDj + FS + so.getObject() .a());

String subText = Files.readFromFile(
subFile,"UTF-8");

JointClassification lmjc =
lmCompiledClassifier.classifyJoint(
subText.toCharArray()~ 0, subText.length());

10calLMConfMatrix.increment(
CATEGORIES [localCatIDj,

lmjc.bestCategory());

ScoredClassification knnsc =(ScoredClassification)
KnnCompiledClassifier.classify(subText);

10calKNNConfMatrix.increment(
CATEGORIES [localCatIDj,

knnsc.bestCategory());

JointClassification naivebayesjc
naiveBayesCompiledClassifier.classifyJoint(
subText.toCharArray(), 0, subText.length());

localNBConfMatrix.increment(
CATEGORIES [localCatIDj,

naivebayesjc.bestCategory());

ScoredClassification tfidfsc =
(ScoredClassification)
tfidfCompiledClassifier.classify(subText);

10calTFIDFConfMatrix.increment(

97

Master's Thesis - A. Tavasoli McMaster - Computer Science

as output

CATEGORIES [localCatIDj,
tfidfsc.bestCategory());

IIChoose the classifier that does the best and put at

int bestLocalClassifier = findMax(
localLMConfMatrix.totalAccuracy(),
localKNNConfMatrix.totalAccuracy(),
localNBConfMatrix.totalAccuracy(),
localTFIDFConfMatrix.totalAccuracy());

Ilfind the classifier with minimum error

Ilif LM is chosen
if(bestLocalClassifier == 0)

JointClassification jc =
lmCompiledClassifier.classifyJoint(
text.toCharArray(), 0, text.length());

confMatrix.increment(
CATEGORIES[ij, jc.bestCategory());

Ilif Knn is chosen
} else if(bestLocalClassifier == 1) {

ScoredClassification classification
(ScoredClassification)

knnCompiledClassifier.classify(text);
confMatrix.increment(CATEGORIES[ij,
classification.bestCategory());
Ilif Naive Bayes is chosen
} else if(bestLocalClassifier == 2) {

JointClassification jc =
naiveBayesCompiledClassifier.classifyJoint(

text.toCharArray(), 0,
text.length());

confMatrix.increment(
CATEGORIES[ij, jc.bestCategory());

Ilif TF/IDF is chosen
} else if(bestLocalClassifier == 3) {

ScoredClassification classification
(ScoredClassification)

tfidfCompiledClassifier.classify(text);
confMatrix.increment(CATEGORIES[ij,

classification.bestCategory());

catch(Exception e) {
e.printStackTrace();

98

Master's Thesis - A. Tavasoli McMaster - Computer Science

return confMatrix;

//III/III/III
// Adaptive classifier combination
////////////////
public static ConfusionMatrix testAdaptiveClassifierComb(
Vector<Vector> mainVector, String lmModelFile,
String knnModelFile, String navieBayesModelFile, String
tfidfModelFile) {

ConfusionMatrix confMatrix =
new ConfusionMatrix(CATEGORIES);

try {
//LM Classifier
ObjectlnputStream oi = new ObjectlnputStream(

new FilelnputStream(lmModelFile));

LMClassifier lmCompiledClassifier =
(LMClassifier) oi.readObject();

oi . close () ;

//Knn Classifier
oi = new ObjectlnputStream(

new FilelnputStream(knnModelFile));

KnnClassifier<CharSequence> knnCompiledClassifier
(KnnClassifier<CharSequence» oi.readObject();

oi. close () ;

//Navie Bayes Classifier
oi = new ObjectlnputStream(

new FilelnputStream(navieBayesModelFile));

LMClassifier naiveBayesCompiledClassifier
(LMClassifier) oi.readObject();

oi . close () ;

//TF-IDF Classifier
oi = new ObjectlnputStream(

new FilelnputStream(tfidfModelFile));

BaseClassifier tfidfCompiledClassifier
(BaseClassifier) oi.readObject();

oi. close () ;

for(int i=O;i<CATEGORIES.length; i++) {
Vector<FileBinayType> catVect mainVector.get(i);
String text;
for(FileBinayType tf : catVect)

if(tf.state != null && tf.state == FileState.Test)
text = Files.readFromFile(tf.file,"UTF-8");

99

Master's Thesis - A. Tavasoli McMaster - Computer Science

classifiers

belongs to

to classify

//an array that keeps results of different

String[] classesSelected = new String[4];

//classify new document to see which categories it

JointClassification lmjc =
lmCompiledClassifier.classifyJoint(

text.toCharArray(), 0, text.length());

classesSelected[O] = lmjc.bestCategory();

ScoredClassification knnsc =(ScoredClassification)
knnCompiledClassifier.classify(text);

classesSelected[l] = knnsc.bestCategory();

JointClassification naivebayesjc =
naiveBayesCompiledClassifier.classifyJoint(

text.toCharArray(), 0, te~t.length());

classesSelected[2] = naivebayesjc.bestCategory();

ScoredClassification tfidfsc = (ScoredClassification)
tfidfCompiledClassifier.classify(text);

classesSelected[3] = tfidfsc.bestCategory();

//Find K nearest neighbor of the sample that we want

ArrayList<ScoredObject<Pair<String, Integer»>
ScoredNeighbors =
knnCompiledClassifier.returnNeighbours(
(CharSequence) text, tf.file.getName(), 4, 1);

double[] Wi = new double[ScoredNeighbors.size()];
double [] Acc = {O. 0, O. 0, O. 0, O. 0 } ;

CosineDistance cd = new CosineDistance();

com.aliasi.matrix.Vector inputVect =
knnCompiledClassifier.returnVector(

(CharSequence) text, tf.file.getName());

for(int s = O;s < classesSelected. length; s++)
for (int p = O;p < ScoredNeighbors.size() ;p++)

ScoredObject<Pair<String,Integer» so =
ScoredNeighbors.get(p);

int catID = so.getObject() .b();
String docname = so.getObject() .a();
//Open and read the neighbor file

100

Master's Thesis - A. Tavasoli McMaster - Computer Science

File subFile = new File(ORIGINAL_DIR + FS +
CATEGORIES [catIDj + FS + docname);

string subText =
Files.readFromFile(subFile,"UTF-8");

com.aliasi.matrix.Vector subVect =
knnCompiledClassifier.returnVector(

(CharSequence) subText, docname);

Wi[pj = cd.distance(inputVect,subVect);

JointClassification locallmjc =
lmCompiledClassifier.classifyJoint(

subText.toCharArray(), 0,
subText.length());

Acc[sj +=
Wi[pj*locallmjc.conditionalProbability(

classesSelected[sj);

ScoredClassification localknnsc
(ScoredClassification)
knnCompiledClassifier.classify(subText);

Acc[sj += Wi[pj*ScoreToProbability(localknnsc,
catStr2Int(classesSelected[sj));

JointClassification localnaivebayesjc
naiveBayesCompiledClassifier.classifyJoint(
subText.toCharArray(), 0, subText.length());

Acc[sj +=
Wi[pj*localnaivebayesjc.conditionalProbability(
classesSelected[sj);

ScoredClassification localtfidfsc
(ScoredClassification)
tfidfCompiledClassifier.classify(subText);

Acc[sj += Wi[pj*ScoreToProbability(localtfidfsc,
catStr2Int(classesSelected[sj));

int bestLocalClassifier findMax (Acc) ;

confMatrix.increment(CATEGORIES[ij,
classesSelected[bestLocalClassifierj);

catch(Exception e) {

101

Master's Thesis - A. Tavasoli McMaster - Computer Science

e.printStackTrace();

return confMatrix;

///
// Simple Voting Combination
////////////////
public static ConfusionMatrix testSimpleVotingCombClassifier(
Vector<Vector> mainVector, String lmModelFile,
String knnModelFile, String navieBayesModelFile, String
tfidfModelFile) {

ConfusionMatrix confMatrix =

new ConfusionMatrix(CATEGORIES);
try (
//LM Classifier
ObjectInputStream oi = new ObjectInputStream(

new FileInputStream(lmModelFile));

LMClassifier lmCompiledClassifier =
(LMClassifier) oi.readObject();

oi. close () ;

//Knn Classifier
oi = new ObjectInputStream(

new FileInputStream(knnModelFile));

KnnClassifier<CharSequence> knnCompiledClassifier
(KnnClassifier<CharSequence» oi.readObject();

oi.close();

//Navie Bayes Classifier
oi = new ObjectInputStream(

new FileInputStream(navieBayesModelFile));

LMClassifier naiveBayesCompiledClassifier
(LMClassifier) oi.readObject();

oi . close () ;

//TF-IDF Classifier
oi = new ObjectInputStream(

new FileInputStream(tfidfModelFile));

BaseClassifier tfidfCompiledClassifier
(BaseClassifier) oi.readObject();

oi . close () ;

for(int i=O;i<CATEGORIES.length; i++) (
Vector<FileBinayType> catVect = mainVector.get(i);

String text;
for(FileBinayType tf : catVect) {
if(tf.state != null && tf.state == FileState.Test)

text = Files.readFromFile(tf.file,"UTF-S");

102

Master's Thesis - A. Tavasoli McMaster - Computer Science

//an array that keeps results of different classifiers
String[] classesSelected = new String[4];
doubler] vote = new double[CATEGORIES.length];
for(int k=O;k<CATEGORIES.length;k++) (

vote[k] = 0.0;

//classify new document to see which categories it
//belongs to
JointClassification Imjc =

lmCompiledClassifier.classifyJoint(
text.toCharArray(), 0, text.length());

classesSelected[O] = lmjc.bestCategory();
vote [catStr2Int(classesSelected[0])] += 1.0 *

lmjc.conditionalProbability(classesSelected[O]);

ScoredClassification knnsc = (ScoredClassification)
knnCompiledClassifier.classify(text);
classesSelected[l] = knnsc.bestCategory();

vote [catStr2Int(classesSelected[1])] += 1.0 *
ScoreToProbability(knnsc,

catStr2Int(classesSelected[1]));

JointClassification naivebayesjc =
naiveBayesCompiledClassifier.classifyJoint
text. toCharArray(), 0, text.length());

classesSelected[2] = naivebayesjc.bestCategory();

voter catStr2Int(classesSelected[2])] += 1.0 *
naivebayesjc.conditionalProbability
(classesSelected[2]);

ScoredClassification tfidfsc =(ScoredClassification)
tfidfCompiledClassifier.classify(text);

classesSelected[3] = tfidfsc.bestCategory();

voter catStr2Int(classesSelected[3])] += 1.0 *
ScoreToProbability(knnsc,
catStr2Int(classesSelected[3]));

//See which class been chosen the most

int bestLocalClassifier = findMax(vote);

confMatrix.increment(CATEGORIES[i],
CATEGORIES[bestLocalClassifier]);

catch(Exception e)
e.printStackTrace();

103

Master's Thesis - A. Tavasoli McMaster - Computer Science

return confMatrix;

//
/////////
///// New Combination Algorithm
//
public static ConfusionMatrix testNewCombClassifier(
Vector<Vector> mainVector,String lrnModelFile, String knnModelFile,
String navieBayesModelFile, String tfidfModelFile) {

ConfusionMatrix confMatrix =

new ConfusionMatrix(CATEGORIES);

try (

//LM Classifier
ObjectlnputStream oi = new ObjectlnputStream(
new FilelnputStream(lrnModelFile));

LMClassifier lmCompiledClassifier
(LMClassifier) oi.readObject();

oi.close();

//Knn Classifier
oi = new ObjectlnputStream(

new FilelnputStream(knnModelFile));

KnnClassifier<CharSequence> knnCompiledClassifier
(KnnClassifier<CharSequence» oi.readObject();

oi.close();

//Navie Bayes Classifier
oi = new ObjectInputStream(

new FilelnputStream(navieBayesModelFile));

LMClassifier naiveBayesCompiledClassifier
(LMClassifier) oi.readObject();

oi.close();

//TF-IDF Classifier
oi = new ObjectlnputStream(

new FileInputStream(tfidfModelFile));

BaseClassifier tfidfCompiledClassifier
(BaseClassifier) oi.readObject();

oi.close();

for(int i=O;i<CATEGORIES.length; i++) (
Vector<FileBinayType> catVect mainVector.get(i);
String text;
for(FileBinayType tf : catVect)

if(tf.state != null && tf.state FileState.Test) {

104

Master's Thesis - A. Tavasoli McMaster - Computer Science

to classify

text = Files.readFromFile(tf.file,IUTF-8");

doubler] Score = new double[CATEGORIES.length];
//an array that keeps results of different
//classifiers
String[] classesSelected = new String[4];
doubler] vote = new double[CATEGORIES.length];
double total = 0.0;
for(int k=O;k<CATEGORIES.length;k++)

vote[k] = 0.0;
Score[k] = 0.0;

//classify new document to see which categories it
//belongs to
JointClassification lmjc =

lmCompiledClassifier.classifyJoint(
text.toCharArray(), 0, text.length());

classesSelected[O] = lmjc.bestCategory();
voter catStr2Int(classesSelected[0])] += 1.0 *

lmjc.conditionalProbability(classesSelected[O]) ;

ScoredClassification knnsc =

(ScoredClassification)
knnCompiledClassifier.classify(text);

classesSelected[l] = knnsc.bestCategory();
voter catStr2Int(classesSelected[1])] += 1.0 *
ScoreToProbability(knnsc,

catStr2Int(classesSelected[1]));

JointClassification naivebayesjc =
naiveBayesCompiledClassifier.classifyJoint(

text. toCharArray(), 0, text.length());
classesSelected[2] = naivebayesjc.bestCategory();
vote [catStr2Int(classesSelected[2])] += 1.0 *

naivebayesjc
.conditionalProbability(classesSelected[2]);

ScoredClassification tfidfsc = (ScoredClassification)
tfidfCompiledClassifier.classify(text);

classesSelected[3] = tfidfsc.bestCategory();
voter catStr2Int(classesSelected[3])] += 1.0 *

ScoreToProbability(knnsc,
catStr2Int(classesSelected[3]));

///
//Find K nearest neighbor of the sample that we want

ArrayList<ScoredObject<Pair
<String,Integer»>

ScoredNeighbors = null;
ScoredNeighbors =

105

Master's Thesis - A. Tavasoli McMaster - Computer Science

knnCompiledClassifier.returnNeighbours
((CharSequence) text, tf.file.getName(), 9, 1);

doubler] Wi = new double[ScoredNeighbors.size()];
double [] Acc = {O. 0, o. 0 , O. 0, o. 0 } ;

CosineDistance cd = new CosineDistance();

com.aliasi.matrix.Vector inputVect =
knnCompiledClassifier.returnVector(
(CharSequence) text, tf.file.getName());

ArrayList<ScoredObject<Pair
<String, Integer»> toRemove

= new ArrayList<ScoredObject<Pair
<String, Integer»> () ;

for (int p = 0; p < ScoredNeighbors.size(); p++) {
ScoredObject<Pair<String,Integer» so =
ScoredNeighbors.get(p);
int catID = so.getObject() .b();
String docname = so.getObject() .a();
//Open and read the neighbor file
File subFile = new File(ORIGINAL_DIR + FS +

CATEGORIES [catID] + FS + docname);

String subText =

Files. rea dFromFi le (subFile, "UTF-8") ;

com.aliasi.matrix.Vector subVect =
knnCompiledClassifier.returnVector(
(CharSequence) subText, docname);

if (cd.proximity(inputVect,subVect) < .70)
toRemove.add(so);

if(ScoredNeighbors.size()
toRemove.remove(O);
toRemove.remove(O);

toRemove.size()) {

else if(ScoredNeighbors.size()
(toRemove.size()+l)) {

toRemove.remove(O);

ScoredNeighbors.removeAll(toRemove);

for(int s = 0; s < classesSelected.length; s++)
for(int p = 0; p < ScoredNeighbors.size(); p++)

ScoredObject<Pair<String,Integer» so =
ScoredNeighbors.get(p);

106

Master's Thesis - A. Tavasoli McMaster - Computer Science

int catID = so.getObject() .b();
string docname = so.getObject() .a();
//Open and read the neighbor file
File subFile = new File(ORIGINAL_DIR + FS +

CATEGORIES [catID] + FS + docname);

String subText =

Files. readFromFile (subFile, IUTF-8") ;

com.aliasi.matrix.Vector subVect =
knnCompiledClassifier.returnVector(
(CharSequence) subText, docname);

Wi[p] = cd.proximity(inputVect,subVect);

JointClassification locallmjc =
lmCompiledClassifier.classifyJoint(
subText.toCharArray(), 0, subText.length(»;

Acc[s] +=
Wi[p]*locallmjc.conditionalProbability(
classesSelected[s]);

ScoredClassification localknnsc
(ScoredClassification)
knnCompiledClassifier.classify(subText);

Acc[s] += Wi[p] * Score ToProbabi li ty (localknnsc,
catStr2Int(classesSelected[s]»;

JointClassification localnaivebayesjc =
naiveBayesCompiledClassifier.classifyJoint(
subText.toCharArray(), 0, subText.length(»;

Acc[s] += Wi[p]*localnaivebayesjc.
conditionalProbability(

classesSelected[s]);

ScoredClassification localtfidfsc
(ScoredClassification)
tfidfCompiledClassifier.classify(subText);

Acc[s] +=
Wi[p]*ScoreToProbability(localtfidfsc,
catStr2Int(classesSelected[s]»;

//Select the classifier with highest Score
int bestClassifier = findMax(Acc);

confMatrix.increment(CATEGORIES[i],
classesSelected[bestClassifier]);

107

Master's Thesis - A. Tavasoli

catch(Exception e) {
e.printStackTrace();

return confMatrix;

McMaster - Computer Science

//
//////////
//////////// Language Model Classifier
//
///////11/
public static void trainLM(Vector<Vector> mainVector,
String modelFile, int NGRAM_SIZE) {

DynamicLMClassifier classifier =
DynamicLMClassifier.createNGramBoundary(

CATEGORIES, NGRAM_SIZE);
try {

for(int i=O;i<CATEGORIES.length; i++) {
Vector<FileBinayType> catVect = mainVector.get(i);
for(FileBinayType tf : catVect) {

if(tf.state != null && tf.state == FileState.Train)
String text = Files.readFromFile(tf.file,"UTF-8");
classifier. train (CATEGORIES[ij , text, NGRAM_SIZE);

ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream(modelFile));

classifier.compileTo(os);
os. close () ;
}

catch(IOException e) {
e.printStackTrace();

////////////////
public static ConfusionMatrix testLM(Vector<Vector> mainVector,
String modelFile) {

ConfusionMatrix confMatrix
new ConfusionMatrix(CATEGORIES);

try {
ObjectInputStream oi = new ObjectInputStream(

new FileInputStream(modelFile));
LMClassifier compiledClassifier =

(LMClassifier) oi.readObject();
oi . close () ;

for(int i=O;i<CATEGORIES.length; i++) {
Vector<FileBinayType> catVect = mainVector.get(i);
String text;

108

Master's Thesis - A Tavasoli McMaster - Computer Science

for(FileBinayType tf : catVect) {
if(tf.state != null && tf.state == FileState.Test)

text = Files.readFromFile(tf.file,"UTF-B");
JointClassification jc =

compiledClassifier.classifyJoint(
text.toCharArray(), 0, text.length());

confMatrix.increment(
CATEGORIES[ij, jc.bestCategory());

catch(Exception e) {
e.printStackTrace();

return confMatrix;

//
//////////
//////////// Knn Classifier
//
//////////
public static void trainKnn(Vector<Vector> mainVector, String
modelFile, int K_SIZE) {

KnnClassifier<CharSequence> classifier=
new KnnClassifier<CharSequence> (
new TokenFeatureExtractor(
new IndoEuropeanTokenizerFactory()), K_SIZE,
new EuclideanDistance());

try {
for(int i=O;i<CATEGORIES.length; i++) {

Vector<FileBinayType> catVect mainVector.get(i);
for(FileBinayType tf : catVect) {
if(tf.state != null && tf.state == FileState.Train)
String text = Files.readFromFile(tf.file,"UTF-B");

classifier.handle(new Classified(text,
new Classification(CATEGORIES[ij)));

}

}

ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream(modelFile));

classifier.compileTo(os);
os. close () ;
}

catch(IOException e) {
e.printStackTrace();

////////////////
public static ConfusionMatrix testKnn(Vector<Vector> mainVector,
String modelFile) {

109

Master's Thesis - A. Tavasoli McMaster - Computer Science

ConfusionMatrix confMatrix =

new ConfusionMatrix(CATEGORIES);

try {
ObjectlnputStream oi = new ObjectlnputStream(

new FilelnputStream(modelFile));
BaseClassifier compiledClassifier =

(BaseClassifier) oi.readObject();
oi.close();

for(int i=O;i<CATEGORIES.length; i++) {
Vector<FileBinayType> catVect mainVector.get(i);
String text;
for(FileBinayType tf : catVect)

if(tf.state != null && tf.state == FileState.Test)
text = Files.readFromFile(tf.file,"UTF-S");
ScoredClassification classification =

(ScoredClassification)
compiledClassifier.classify(text);

confMatrix.increment(CATEGORIES[ij,
classification.bestCategory());

catch(Exception e) {
e.printStackTrace();

return confMatrix;

//
//////////
//////////// Naive Bayes Classifier
//
////1/////
public static void trainNaiveBayes(Vector<Vector> mainVector,
String modelFile) {

NaiveBayesClassifier classifier =
new NaiveBayesClassifier(CATEGORIES,

new IndoEuropeanTokenizerFactory());
try {
for(int i=O;i<CATEGORIES.length; i++) {

Vector<FileBinayType> catVect = mainVector.get(i);
for(FileBinayType tf : catVect) {

if(tf.state != null && tf.state == FileState.Train)
String text = Files.readFromFile(tf.file,"UTF-S");

classifier. train (CATEGORIES[ij ,
text,text.length());

ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream(modelFile));

classifier.compileTo(os);

110

Master's Thesis - A. Tavasoli

os.close() ;
}

catch(IOException e) {
e.printStackTrace();

////////////////

McMaster - Computer Science

public static ConfusionMatrix testNaiveBayes(Vector<Vector>
mainVector, String modelFile) {
ConfusionMatrix confMatrix =

new ConfusionMatrix(CATEGORIES);
try {

ObjectlnputStream oi = new ObjectlnputStream(
new FilelnputStream(modelFile));

LMClassifier compiledClassifier =
(LMClassifier) oi.readObject();

oi . close () ;

for(int i=O;i<CATEGORIES.length; i++) {
Vector<FileBinayType> catVect mainVector.get(i);
String text;
for(FileBinayType tf : catVect)

if(tf.state != null && tf.state == FileState.Test)
text = Files.readFromFile(tf.file,"UTF-8");
JointClassification jc =

compiledClassifier.classifyJoint(
text.toCharArray(), 0, text.length());
confMatrix.increment(CATEGORIES[ij,

jc.bestCategory());

catch(Exception e) {
e.printStackTrace();

return confMatrix;

//
//////////
//////////// TF/IDF Classifier
//
//////////
public static void trainTFIDF(Vector<Vector> mainVector, String
modelFile) {

TfldfClassifierTrainer<CharSequence> classifier= new
TfldfClassifierTrainer<CharSequence> (
new TokenFeatureExtractor(
new IndoEuropeanTokenizerFactory()));

try {
for(int i=O;i<CATEGORIES.length; i++)

111

Master's Thesis - A. Tavasoli McMaster - Computer Science

Vector<FileBinayType> catVect = mainVector.get(i);

for(FileBinayType tf : catVect)
if(tf.state != null && tf.state == FileState.Train) {

String text = Files.readFromFile(tf.file, I UTF-8");
classifier. handle--(new Classified (text,

new Classification(CATEGORIES[ij)));

ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream(modelFile));

classifier.compileTo(os);
os.close();

catch(IOException e) {
e.printStackTrace();

IIIIIIIIIIIIIIII
public static ConfusionMatrix testTFIDF(Vector<Vector> mainVector,
String modelFile) {
ConfusionMatrix confMatrix =

new ConfusionMatrix(CATEGORIES);

try {
ObjectInputStream oi = new ObjectInputStream(

new FileInputStream(modelFile));
BaseClassifier compiledClassifier =

(BaseClassifier) oi.readObject();
oi . close () ;

for(int i=O;i<CATEGORIES.length; i++) {
Vector<FileBinayType> catVect mainVector.get(i);
String text;
for(FileBinayType tf : catVect)

if(tf.state != null && tf.state ~= FileState.Test)
text = Files.readFromFile(tf.file, I UTF-8");
ScoredClassification classification =

(ScoredClassification)
compiledClassifier.classify(text);

confMatrix.increment(CATEGORIES[ij,
classification.bestCategory());

catch(Exception e) {
e.printStackTrace();

return confMatrix;

112

Master's Thesis - A. Tavasoli McMaster - Computer Science

//
//////////
//////////////// Utilities Function
//
//////////
public static void printConfusionMatrlx(int[] []
tfidfConfMatricesAverage) {

"

int numCats = CATEGORIES. length;

System.out.print(" - ");
for(int i=O;i<numCats;i++) {

System. out.print (CATEGORIES[i] + " , ");

System.out.print("\n");

for(int i=O;i<numCats;i++)
System.out.print(CATEGORIES[i] + " - ");
for(int j=O;j<numCats;j++) {

System.out.print(" " + tfidfConfMatricesAverage[i] [j] +
") ;

System.out.print("\n");

public static int findMax(double ... input)
Random rand = new Random();
int index = rand.nextlnt(input.length);

double max = input[index];
for(int i=O;i<input.length;i++)

if(max<input[i]) {
max = input[i];
index = i;

return index;

public static double falsePositiveError(int[] [] inMatrix) {
int numLOinOther = 0;
for(int i=l;i < CATEGORIES.length;i++)

numLOinOther += inMatrix[O] [i];

int LOtotal = 0;
for(int i=O;i < CATEGORIES.length;i++)

LOtotal += inMatrix[O] [i];

int numLlinL3and4 = 0;
for(int i=2;i < CATEGORIES.length;i++)

113

Master's Thesis - A. Tavasoli McMaster - Computer Science

numL1inL3and4 += inMatrix[ll til;

int L1total = 0;
for(int i=O;i < CATEGORIES.length;i++)

L1totar"+= inMatrix[ll til;

return (double) (numLOinOther+numL1inL3and4)/(LOtotal+L1total);

public static int catStr2Int(String input)
for(int i=O;i<CATEGORIES.length;i++) (

if (CATEGORIES[il .equals(input)) (
return i;

return -1;

public static double ScoreToProbability(ScoredClassification sc,
int rank) (

double total = 0.0;
for(int i=O;i<CATEGORIES.length;i++)

total += sc.score(i);

return (double)sc.score(rank)/total;

11
1//1111111
1111111111111111 Main Function
11
1111111//1
public static void main (String[l args) (

Vector<Vector> mainVector = null;
Vector<ConfusionMatrix> tfidfConfMatrices

new Vector<ConfusionMatrix>();
Vector<ConfusionMatrix> naivebayesConfMatrices

new Vector<ConfusionMatrix>();
Vector<ConfusionMatrix> knnConfMatrices =

new Vector<ConfusionMatrix>();
Vector<ConfusionMatrix> lmConfMatrices

new Vector<ConfusionMatrix>();
Ilcornbinations
Vector<ConfusionMatrix> simpleVotingConfMatrices

new Vector<ConfusionMatrix>();
Vector<ConfusionMatrix> dynamicClassifierSelctionConfMatrices

new Vector<ConfusionMatrix>();
Vector<ConfusionMatrix>

adaptiveClassifierCornbinationConfMatrices
new Vector<ConfusionMatrix>();

Vector<ConfusionMatrix> newCornbinationConfMatrices

114

Master's Thesis - A. Tavasoli McMaster - Computer Science

) ;

new Vector<ConfusionMatrix>();

for(int run=l; run <= NUM_RUNS; run++)
Ilrandomly select the files to be used for training and left
II the remaining for testing
mainVector = new Vector<Vector>();

IIRandomize Timer using Current Time of the system
Calendar cal = Calendar.getInstance();
Random randGen = new Random(cal.getTimeInMillis());

try
int k 0, cap = 0, length = 0;

for(int i=O;i<CATEGORIES.length; i++) {
Vector<FileBinayType> catVector =

new Vector<FileBinayType>();
File classDir = new File (ORIGINAL_DIR, CATEGORIES[i]);

length = classDir.listFiles() .length;
cap = java.lang.Math.round((float) length * PRCNT TEST

int[] testFilesIndex = new int[cap+l];
for(int j=O; j <= cap; j++) {

IINumbers should be unique
int rn = randGen.nextInt(length);
testFilesIndex[j] = rn;
for(int p=O; p < j; p++) {

if(testFilesIndex[p] rn)
j --;
break;

Arrays.sort(testFilesIndex);
int s = 0;
k = 0;
for(File file: classDir.listFiles())

FileBinayType tf;

if(k <= cap && s==testFilesIndex[k])
k++;
tf = new FileBinayType(file,FileState.Test);

else {
tf = new FileBinayType(file,FileState.Train);

catVector.add(tf);

s++;

mainVector.add(catVector);

115

Master's Thesis - A. Tavasoli McMaster - Computer Science

2) ;

catch(Exception e)
e.printStackTrace();

//we will save the whole confusion matrix just in case for
//future usage
//all of the parameters that we need will be available
//train the network using the following files

System.out.println("============================= "+run+
'I run === 'I) ;

System.out.print("training ");

trainTFIDF(mainVector, modelFileDir +
"tcat_tfidfclassifier");

System.out.print(" .");
trainNaiveBayes(mainVector, modelFileDir +

"tcat_naivebayesclassifier");
System.out.print(".");
trainKnn(mainVector, modelFileDir + "tcat_knnclassifier",

System.out.print(".");
trainLM(mainVector, modelFileDir + "tcat lmclassifier", 7);
System.out.print(".");
trainNewClassifier(mainVector,

modelFileDir + "new_lmclassifier",
modelFileDir + "new_knnclassifier",
modelFileDir + "new_naiveBayesclassifier",
modelFileDir + "new_tfidfBayesclassifier",
4, 7);

System.out.println(" ... ");

//test the network and see how good it is
ConfusionMatrix confMatrix;

confMatrix =
testTFIDF(mainVector, modelFileDir +
"tcat_tfidfclassifier");
tfidfConfMatrices.add(confMatrix);

System.out.println("TF/IDF Classifier ");
System.out.println(confMatrix.totalAccuracy());

System.out.println(" done");

System. out .println ("
. ") ;

confMatrix

116

Master's Thesis - A. Tavasoli McMaster - Computer Science

testNaiveBayes(mainVeetor, modelFileDir +
"teat_naivebayeselassifier");

naivebayesConfMatriees.add(eonfMatrix);

System.out.println("Naive Bayes Classifier
...... :'. ");

System.out.println(eonfMatrix.totalAeeuraey());

System.out.println(" done");

System. out .println ("
. ") ;

eonfMatrix
testKnn(mainVeetor, modelFileDir +

"teat knnelassifier");
knnConfMatriees.add(eonfMatrix);

System.out.println("K Nearest Neighbour Classifier
.. ");

System.out.println(eonfMatrix.totalAeeuraey());

System.out.println(" done");

System.out.println("
.. ") ;

eonfMatrix
testLM(mainVeetor, modelFileDir +

"teat Imelassifier");
lmConfMatriees.add(eonfMatrix);

System.out.println("Language Model Classifier
.. I');

System.out.println(eonfMatrix.totalAeeuraey());

System. out. print In (". .. done ") ;

System. out .println ("
. ") ;

System.out.println(lfCombinations n);
eonfMatrix =

testSimpleVotingCombClassifier(mainVeetor,
modelFileDir + "new_lmelassifier",
modelFileDir + "new_knnelassifier",
modelFileDir + "new_naiveBayeselassifier",
modelFileDir + "new_tfidfBayeselassifier");

simpleVotingConfMatriees.add(eonfMatrix);
System.out.println("Simple Voting: "+

117

Master's Thesis - A. Tavasoli McMaster - Computer Science

=="+

confMatrix.totalAccuracy(»;

confMatrix =
testDynamicClassiferSelection(mainVector,
modelFileDir + "new_lmclassifier",
modelFileDir + " new _ knnclassifier",
modelFileDir + Inew_naiveBayesclassifier",
modelFileDir + Inew_tfidfBayesclassifier");

dynamicClassifierSelctionConfMatrices.add(confMatrix);
System.out.println("Dynamic Classifier Selection: "+

confMatrix.totalAccuracy(»;

confMatrix =
testAdaptiveClassifierComb(mainVector,
modelFileDir + "new_lmclassifier",
modelFileDir + "new_knnclassifier",
modelFileDir + Inew_naiveBayesclassifier",
modelFileDir + Inew_tfidfBayesclassifier");

adaptiveClassifierCombinationConfMatrices.add(confMatrix);
System.out.println("Adaptive Classifier Combination:"
+ confMatrix.totalAccuracy(»;

confMatrix =
testNewCombClassifier(mainVector,

modelFileDir + "new_lmclassifier",
modelFileDir + "new_knnclassifier",
modelFileDir + Inew_naiveBayesclassifier",
modelFileDir + Inew_tfidfBayesclassifier");

newCombinationConfMatrices.add(confMatrix);
System.out.println("New Classifier Combination: "+

confMatrix.totalAccuracy(»;

System.out.println(" done");

System.out.println("=======================================

"==\n\n";

System.out.println("Calculating Results ... ");
//get average the results and print the final results
int numCats = CATEGORIES. length;

int[] [] tfidfConfMatricesAverage = new int[numCats] [numCats];
int[] [] naivebayesConfMatricesAverage = new

int[numCats] [numCats];
int[] [] knnConfMatricesAverage = new int[numCats] [numCats];
int[] [] lmConfMatricesAverage = new int[numCats] [numCats];

118

Master's Thesis - A. Tavasoli McMaster - Computer Science

int[] [] simpleVotingConfMatricesAverage = new
int[numCats] [numCats];

int[] [] dcsConfMatricesAverage new int[numCats] [numCats];
int[] [] accConfMatricesAverage new int[numCats] [numCats];
int[] [] newConfMatricesAverage new int[numCats] [numCats];

for(int i=O;i<numCats;i++) {
for(int j=O;j<numCats;j++)

tfidfConfMatricesAverage[i] [j] = 0;
naivebayesConfMatricesAverage[i] [j] 0;
knnConfMatricesAverage[i] [j] = 0;
ImConfMatricesAverage[i] [j] = 0;
simpleVotingConfMatricesAverage[i] [j] 0;
dcsConfMatricesAverage[i] [j] 0;
accConfMatricesAverage[i] [j] 0;
newConfMatricesAverage[i] [j] 0;

for(int i=O;i<numCats;i++) {
for(int j=O;j<numCats;j++)

for(int k=O;k<NUM_RUNS;k++)
tfidfConfMatricesAverage[i] [j] +=

tfidfConfMatrices.get(k) .matrix() [i] [j];

naivebayesConfMatricesAverage[i] [j] +=
naivebayesConfMatrices.get(k) .matrix() [i] [j];

knnConfMatricesAverage[i] [j] +=
knnConfMatrices.get(k) .matrix() [i] [j];

ImConfMatricesAverage[i] [j] +=
ImConfMatrices.get(k) .matrix() [i] [j];

simpleVotingConfMatricesAverage[i] [j] +=
simpleVotingConfMatrices.get(k) .matrix() [i] [j];

dcsConfMatricesAverage[i] [j] +=
dynamicClassifierSelctionConfMatrices.

get (k) .matrix () [i] [j];

accConfMatricesAverage[i] [j] +=
adaptiveClassifierCombinationConfMatrices.

get (k) .matrix () [i] [j] ;

newConfMatricesAverage[i] [j] +=
newCombinationConfMatrices.get(k) .matrix() [i] [j];

tfidfConfMatricesAverage[i] [j] /= (double) NUM_RUNS;
naivebayesConfMatricesAverage[i] [j] /= (double) NUM_RUNS;
knnConfMatricesAverage[i] [j] /= (double) NUM_RUNS;
ImConfMatricesAverage[i] [j] /= (double) NUM_RUNS;

119

Master's Thesis - A. Tavasoli McMaster - Computer Science

simpleVotingConfMatricesAverage[i] [j] /= (double) NUM_RUNS;
dcsConfMatricesAverage[i] [j] /= (double) NUM_RUNS;
accConfMatricesAverage[i] [j] /= (double) NUM_RUNS;
newConfMatricesAverage[i] [j] /= (double) NUM_RUNS;
}

}

//
//calculate total accuracy average
double tfidfTotalAccuracyAverage = 0.0;
double naivebayesTotalAccuracyAverage 0.0;
double knnTotalAccuracyAverage = 0.0;
double lmTotalAccuracyAverage = 0.0;
double simpleVotingTotalAccuracyAverage 0.0;
double dcsTotalAccuracyAverage 0.0;
double accTotalAccuracyAverage 0.0;
double newTotalAccuracyAverage 0.0;

for(int i=O;i<NUM_RUNS;i++) {
tfidfTotalAccuracyAverage +=

tfidfConfMatrices.get(i) .totalAccuracy();

naivebayesTotalAccuracyAverage +=
naivebayesConfMatrices.get(i) .totalAccuracy();

knnTotalAccuracyAverage +=
knnConfMatrices.get(i) .totalAccuracy();

lmTotalAccuracyAverage +=
lmConfMatrices.get(i) .totalAccuracy();

simpleVotingTotalAccuracyAverage +=
impleVotingConfMatrices.get(i) .totalAccuracy();

dcsTotalAccuracyAverage +=
dynamicClassifierSelctionConfMatrices.get(i) .

totalAccuracy();

accTotalAccuracyAverage +=
adaptiveClassifierCombinationConfMatrices.get(i) .

totalAccuracy();

newTotalAccuracyAverage +=
newCombinationConfMatrices.get(i) .

totalAccuracy();

tfidfTotalAccuracyAverage /= (double) NUM_RUNS;
naivebayesTotalAccuracyAverage /= (double) NUM_RUNS;
knnTotalAccuracyAverage /= (double) NUM_RUNSi
lmTotalAccuracyAverage /= (double) NUM_RUNS;
simpleVotingTotalAccuracyAverage /= (double) NUM_RUNS;
dcsTotalAccuracyAverage /= (double) NUM_RUNS;
accTotalAccuracyAverage /= (double) NUM_RUNS;

120

Master's Thesis - A. Tavasoli McMaster - Computer Science

newTotalAccuracyAverage /= (double) NUM_RUNS;
////////////////////////////////
//calculate total type I and II errors
double lmTotalFalsePositive =

falsePositiveError(lmConfMatricesAverage);
double tfidfTotalFalsePositive =

falsePositiveError(tfidfConfMatricesAverage);
double knnTotalFalsePositive =

falsePositiveError(knnConfMatricesAverage);
double naivebayesTotalFalsePositive =

falsePositiveError(naivebayesConfMatricesAverage);
double simpleVotingTotalFalsePositive =

falsePositiveError(simpleVotingConfMatricesAverage);
double dcsTotalFalsePositive =

falsePositiveError(dcsConfMatricesAverage);
double accTotalFalsePositive =

falsePositiveError(accConfMatricesAverage);
double newTotalFalsePositive =

falsePositiveError(newConfMatricesAverage);
//
/// Recall
double tfidfRecallAverage = 0.0;
double naivebayesRecallAverage 0.0;
double knnRecallAverage = 0.0;
double lmRecallAverage = 0.0;
double simpleVotingRecallAverage 0.0;
double dcsRecallAverage 0.0;
double accRecallAverage 0.0;
double newRecallAverage 0.0;

for(int i=O;i<NUM_RUNS;i++) {
tfidfRecallAverage +=

tfidfConfMatrices.get(i) .macroAvgRecall();

naivebayesRecallAverage +=
naivebayesConfMatrices.get(i) .macroAvgRecall();

knnRecallAverage +=
knnConfMatrices.get(i) .macroAvgRecall();

lmRecallAverage +=
lmConfMatrices.get(i) .macroAvgRecall();

simpleVotingRecallAverage +=
simpleVotingConfMatrices.get(i) .macroAvgRecall();

dcsRecallAverage +=
dynamicClassifierSelctionConfMatrices.get(i) .

macroAvgRecall();

accRecallAverage +=
adaptiveClassifierCombinationConfMatrices.get(i) .

macroAvgRecall();

121

Master's Thesis - A. Tavasoli McMaster - Computer Science

newRecallAverage +=
newCombinationConfMatrices.get(i) .

macroAvgRecall();

tfidfRecallAverage /= (double) NUM_RUNS;
naivebayesRecallAverage /= (double) NUM_RUNS;
knnRecallAverage /= (double)NUM RUNS;
lmRecallAverage /= (double) NUM_RUNS;
simpleVotingRecallAverage /= (double)NUM RUNS;
dcsRecallAverage /= (double) NUM_RUNS; -
accRecallAverage /= (double) NUM_RUNS;
newRecallAverage /= (double) NUM_RUNS;

///
////////

//print the results
System.out.println("TF-IDF Confusion Matrix\n");
printConfusionMatrix(tfidfConfMatricesAverage);
System.out.println("\nAverage of Total Accuracy = "+

tfidfTotalAccuracyAverage);
System.out.println("\nTotal Error = "+

tfidfTotalFalsePositive);
System.out.println("\nRecall = "+

tfidfRecallAverage);

System.out.println("Naive Bayes Confusion Matrix\n");
printConfusionMatrix(naivebayesConfMatricesAverage);
System.out.println("\nAverage of Total Accuracy = "+

naivebayesTotalAccuracyAverage);
System.out.println("\nTotal Error = "+

naivebayesTotalFalsePositive);
System.out.println("\nRecall = "+

naivebayesRecallAverage);

System.out.println("Knn Confusion Matrix\n");
printConfusionMatrix(knnConfMatricesAverage);
System.out.println("\nAverage of Total Accuracy "+

knnTotalAccuracyAverage);
System.out.println("\nTotal Error = "+

knnTotalFalsePositive);
System.out.println("\nRecall = "+

knnRecallAverage);

System.out.println("LM Confusion Matrix\n");
printConfusionMatrix(lmConfMatricesAverage);
System.out.println("\nAverage of Total Accuracy "+

lmTotalAccuracyAverage);
System.out.println("\nTotal Error = "+

122

Master's Thesis - A. Tavasoli

lmTotalFalsePositive);
System.out.println("\nRecall

lmRecallAverage);

McMaster - Computer Science

"+

System.out.println("=========== Combinations
=============");

System. out.println ("Simple Voting Confusion Matrix\n");

printConfusionMatrix(simpleVotingConfMatricesAverage);
System.out.println("\nAverage of Total Accuracy = "+

simpleVotingTotalAccuracyAverage);
System.out.println("\nTotal Error = "+

simpleVotingTotalFalsePositive);
System.out.println("\nRecall = "+

simpleVotingRecallAverage);

System.out.println("Dynamic Classifier Selection Confusion
Matrix\n") ;

printConfusionMatrix(dcsConfMatricesAverage);
System. out.println ("\nAverage of Total Accuracy "+

dcsTotalAccuracyAverage);
System.out.println("\nTotal Error = "+

dcsTotalFalsePositive);
System.out.println("\nRecall = "+

dcsRecallAverage);

System.out.println("Adaptive Classifier Combination
Confusion Matrix\n");

printConfusionMatrix(accConfMatricesAverage);
System.out.println("\nAverage of Total Accuracy "+

accTotalAccuracyAverage);
System.out.println("\nTotal Error = "+

accTotalFalsePositive);
System.out.println("\nRecall = "+

accRecallAverage);

System.out.println("NEW Classifier Combination Confusion
Matrix\n");

printConfusionMatrix(newConfMatricesAverage);
System.out.println("\nAverage of Total Accuracy "+

newTotalAccuracyAverage);
System.out.println("\nTotal Error = "+

newTotalFalsePositive);
System.out.println("\nRecall = "+

newRecallAverage);

123

Master's Thesis - A. Tavasoli McMaster - Computer Science

It is worth mentioning here that this work is an implementation based
on LingPipe open source library so it is also open source and free, having the
same license as LingPipe http://alias-Leom Ilingpipe !licenses Ilingpipe
license-1.txt.

124

Master's Thesis - A. Tavasoli McMaster - Computer Science

Appendix VI

The sample output of program for a single run:
============================= 1 run

training
TF/IDF Classifier
0.6666666666666666
............................ done

Naive Bayes Classifier
0.7333333333333333
............................ done

K Nearest Neighbour Classifier
0.5333333333333333
............................ done

Language Model Classifier
0.7666666666666667
............................ done

Combinations
Simple Voting: 0.7666666666666667
Dynamic Classifier Selection: 0.7
Adaptive Classifier Combination: 0.7666666666666667
New Classifier Combination: 0.8
............................ done

Calculating Results . .
TF-IDF Confusion Matrix

- levelO ,level1 leve12, leve13 ,
levelO - 3 2 0 0
level1 - 0
leve12 - 0
leve13 - 0

4
o
2

o
1
1

Average of Total Accuracy

Total Error = 0.3

Recall = 0.6

1
4
12

0.6666666666666666

Naive Bayes Confusion Matrix

- levelO , level1
levelO - 4, 1, 0, 0

leve12 , leve13 ,

125

Master's Thesis - A. Tavasoli

level1 - 1
leve12 - 0
leve13 - 0

3
o
1

o
1
o

Average of Total Accuracy

Total Error = 0.2

1 ,
4 ,
14

Recall = 0.6333333333333333
Knn Confusion Matrix

McMaster - Computer Science

0.7333333333333333

- levelO , level1 leve12 , leve13 ,
levelO - 2 3 0 0
level1 - 1 3 0 1
leve12 - 0 1 2 2
leve13 - 2 2 2 9

Average of Total Accuracy = 0.5333333333333333

Total Error = 0.4

Recall = 0.5
LM Confusion Matrix

- levelO , level1 leve12, leve13 ,
levelO - 4 1 0 0
level1 - 1 3 0 1
leve12 - 0 0 1 4
leve13 - 0 0 0 15

Average of Total Accuracy 0.7666666666666667

Total Error = 0.2

Recall = 0.6499999999999999
=========== Combinations =============
Simple Voting Confusion Matrix

- levelO , level1 leve12, leve13 ,
levelO - 5 0 0 0
level1 - 1 3 0 1
leve12 - 0 0 1 4
leve13 - 0 1 0 14

Average of Total Accuracy 0.7666666666666667

Total Error = 0.1

Recall = 0.6833333333333333
Dynamic Classifier Selection Confusion Matrix

- levelO , level1 leve12, leve13 ,
levelO - 2, 3, 0, 0

126

Master's Thesis - A. Tavasoli

levell - 1
leve12 - 0
leve13 - 0

3
o
o

o
1
o

1 ,
4 ,
15

McMaster - Computer Science

Average of Total Accuracy 0.7

Total Error = 0.4

Recall = 0.55
Adaptive Classifier Combination Confusion Matrix

- levelO , levell
levelO - 5 0 0
levell - 1
leve12 - 0
leve13 - 0

4
o
1

o
o
o

Average of Total Accuracy

Total Error = 0.0

o
o
5
14

Recall = 0.6833333333333333

leve12 , leve13 ,

0.7666666666666667

NEW Classifier Combination Confusion Matrix

- levelO , levell
levelO - 5 0 0
levell - 1 4 0
leve12 - 0 0 2
leve13 - 0 1 1

Average of Total Accuracy

Total Error = 0.0

Recall = 0.7666666666666667

127

'j I) I) .-~ "

i ... ,<J '--i

