Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9388
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDrysdale, R.en_US
dc.contributor.advisorEI-Dakhakhni, W.en_US
dc.contributor.authorVandervelde, Jordanen_US
dc.date.accessioned2014-06-18T16:46:54Z-
dc.date.available2014-06-18T16:46:54Z-
dc.date.created2011-06-03en_US
dc.date.issued2010-11en_US
dc.identifier.otheropendissertations/4516en_US
dc.identifier.other5534en_US
dc.identifier.other2046116en_US
dc.identifier.urihttp://hdl.handle.net/11375/9388-
dc.description.abstract<p>Much of the experimental research on shear wall elements in reinforced masonry has been performed on shear walls in isolation. These elements have typically been removed from their structural system and artificial idealized loading is placed on them. Testing is limited to these types of experiments because of limitations of laboratory equipment or the potential cost constraints of attempting tests on full building systems. Full-scale testing as well as some reduced scale testing has been performed at McMaster University over recent years. However, in order to examine larger walls as well as full building structures, the focus of research has turned more towards reduced-scale testing. First, half-scale tests were completed, and now, as part of a new test program, testing utilizes one-third scale concrete blocks.<br /><br />This thesis focuses on the ductile response of a one-third scale reinforced, fully grouted, concrete block shear wall building. As the name implies, the lateral load resisting system consists solely of reinforced masonry shear walls. Documentation is presented of the building response in terms of stiffness, torsion and post-yielding lateral loading. Further examination is presented related to the diaphragm action and associated inter-wall coupling behaviour. The load-displacement characteristics of the structure are then broken down into the response of the individual shear wall elements within the structure. These response characteristics are then related back to previous studies of the same wall configurations tested in isolation.<br /><br />The primary objective of the thesis is to provide a foundation to build a relationship between the behaviour of reinforced masonry shear walls tested in isolation and their behaviour in a building or system setting. This, along with future research in this area will provide comparisons between current design practice and observed performance for the purpose of potentially amending design practices related to seismic provisions as found in the National Building Code of Canada (2010) as well as the masonry design standard C5A 5304.1 (2004).<br /><br />The results of this study show a positive response for the use of one-third scale testing as well as testing of full systems. Although relatively brittle reinforcing steel limited the ability of the structure to achieve the expected ductility level the test results did show excellent promise for the hypothesis presented. This experimental program showed the potential of reinforced masonry shear walls to resist seismic loading while acting as part of a structural system.</p>en_US
dc.subjectCivil Engineeringen_US
dc.subjectCivil Engineeringen_US
dc.titleBehaviour of Reduced-Scale Fully Grouted Concrete Block Masonry Buildingen_US
dc.typethesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
8.58 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue