Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9320
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKumar, Shivaen_US
dc.contributor.authorChen, Zhengkaien_US
dc.date.accessioned2014-06-18T16:46:36Z-
dc.date.available2014-06-18T16:46:36Z-
dc.date.created2011-06-02en_US
dc.date.issued2010-09en_US
dc.identifier.otheropendissertations/4454en_US
dc.identifier.other5474en_US
dc.identifier.other2044156en_US
dc.identifier.urihttp://hdl.handle.net/11375/9320-
dc.description.abstract<p>The rapid development of fiber-optic communication system requires a increasing transmission data rate and reach. One of the challenge for long-haul high-speed fiber-optic system is how to reduce the impairments and degrading effects from fiber dispersions and nonlinearity. Although the advances of digital signal processor (DSP) make impairment compensation for the coherent systems become possible, the implementation of coherent system is still expensive. Among the direct detection systems, differential phase-shift keying (DPSK) system shows great advantages over other modulation schemes. Although the recent commercial fiber-optic communication systems are based on DPSK, polarization-mode dispersion and fiber nonlinearity are still limiting factors for DPSK systems. In 2004, a differential polarization-phase-shift keying (DPolPSK) system in which information is encoded in both polarization and phase with multi-level direct detection is proposed, and it is found out the DPolPSK system greatly reduces the effect of nonlinear polarization scattering. With the expectation of getting a better nonlinear tolerance than DPSK system, a novel differential polarization-shift keying (DPolSK) system with balanced direct detection receiver is proposed and compared with DPSK system in terms of fiber dispersion and nonlinearity tolerance.</p> <p>The DPolSK system encodes information in the polarization angle difference between two adjacent symbols. To transmit bit '1' ('0'), the polarization angle of the current symbol is shifted by π/2 [-/2 (-π/2) with respect to the previous symbol. A balanced detector based on optical delay interferometer and Faraday rotator is used to demodulate the DPolSK signals. Ideally without dispersion and nonlinearity, the DPolSK has the same receiver current level as DPSK system.</p> <p>Monter-carlo simulations are conducted to evaluate the DPolSK system in the presence of chromatic dispersion (CD), polarization-mode dispersion (PMD), and fiber nonlinearity (FNL). The simulation results show DPolSK system has the same bit-error-rate (BER) and PMD tolerance as DPSK system when fiber nonlinearity is ignored. However, when nonlinearity is taken account in the system, DPolSK shows overall superiority to DPSK system. The reason that DPolSK has higher nonlinear tolerance than DPSK is also explored. The intra-channel four-wave mixing (IFWM) effect on the DPolSK and DPSK systems are investigated and the simulation results show the ghost pulse generation induced by IFWM is suppressed in DPolSK system as compared to DPSK system, leading to higher nonlinear tolerance.</p>en_US
dc.subjectElectrical and Computer Engineeringen_US
dc.subjectElectrical and Computer Engineeringen_US
dc.titleA Novel Differential Polarization-shift Keying Scheme for Fiber-optic Communication Systemen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.5 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue