Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9156
Title: Electrical Discharge Texturing of Cutting Tools
Authors: Tovey, Josh
Advisor: Koshy, Philip
Department: Mechanical Engineering
Keywords: Mechanical Engineering;Mechanical Engineering
Publication Date: Sep-2010
Abstract: <p>During metal removal operations, friction occurs at the interface between the rake face of the cutting tool and the chip. Tool rake face friction adversely influences the chip formation process and consumes about 25% of the total cutting energy. Friction in cutting can be controlled and reduced by introducing a lubricant into the tool-chip interface, however the effectiveness of this is a function of the cutting speed and uncut chip thickness, among other factors. Lubricant penetration was determined in the 1970's to be a result of capillary action through channels resulting in part from the roughness of the tool rake face and the mating chip face. Recent investigations have looked at increasing the penetration and effectiveness of lubrication by engineering the tool surface to promote and retain lubricants by introducing a texture on the tool rake face.</p> <p>This thesis details methods used for surface engineering the rake face of cutting tools focusing on the novel application of electrical discharge machining (EDM) to obtain the desired texture, with a view to facilitating lubricant penetration and retention. A significant enhancement in machining performance consequent to such tool face texturing is demonstrated. The functionality of such surfaces is discussed as well as the texturing process, application areas and limitations.</p>
URI: http://hdl.handle.net/11375/9156
Identifier: opendissertations/4304
5322
2039317
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
30.17 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue