Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9097
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPatriciu, Alexandruen_US
dc.contributor.authorFanson, Richarden_US
dc.date.accessioned2014-06-18T16:45:34Z-
dc.date.available2014-06-18T16:45:34Z-
dc.date.created2011-05-27en_US
dc.date.issued2010-08en_US
dc.identifier.otheropendissertations/4250en_US
dc.identifier.other5268en_US
dc.identifier.other2034966en_US
dc.identifier.urihttp://hdl.handle.net/11375/9097-
dc.description.abstract<p>p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #565656} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #6a6a6a} span.s1 {color: #7b7b7b} span.s2 {color: #949494} span.s3 {color: #414141} span.s4 {color: #6a6a6a} span.s5 {color: #565656}</p> <p>Traditionally, robots are used to handle rigid objects, such as in automotive and manufacturing industries. Emerging robotic fields like food industry and medical robotics has inspired research into robots capable of accurately manipulating deformable objects.</p> <p>This thesis fo cuses on a task known as the indirect simultaneous positioning problem. The task requires accurate deformation control of a nonrigid obj ect. The desired configuration is prescribed by control points defined within the object body. This deformation is achieved by applying forces to to manipulation points located elsewhere on the body.</p> <p>This thesis approaches the problem using a linear robust output regulation framework. This framework requires the following steps:</p> <p>p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #565656} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #7b7b7b} p.p3 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #6a6a6a} span.s1 {font: 10.0px Helvetica} span.s2 {color: #6a6a6a} span.s3 {color: #414141} span.s4 {color: #7b7b7b} span.s5 {color: #565656} span.s6 {color: #ababab} span.s7 {color: #949494}</p> <p>1. construct a second-order dynamical model of the object</p> <p>2. linearize about the equilibrium point</p> <p>3. assess the controllability, observability, and solution to the regulator equations</p> <p>4. compute the controller gains that solve the regulation problem</p> <p>p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #565656} span.s1 {color: #6a6a6a} span.s2 {color: #414141} span.s3 {color: #7b7b7b}</p> <p>This control law approach is tested in both simulations using a nonlinear RKPM model of a deformable object, and in experiments using a robot manipulator to apply the desired forces to the manipulation points of a physical, elastic, deformable object. This thesis proves the validity of t his approach using homogeneous and nonhomogeneous planar objects, as well as multiple control point and manipulation point configurations.</p>en_US
dc.subjectElectrical and Computer Engineeringen_US
dc.subjectElectrical and Computer Engineeringen_US
dc.titleRobotic Manipulation of Deformable Objects Using Robust Output Regulationen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
34.49 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue