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Abstract 

Traditionally, robots are used to handle rigid objects , such as in automotive and man­

ufacturing industries. Emerging robotic fields like food industry and medical robotics 

has inspired research into robots capable of accurately manipulating deformable ob­

jects. 

This thesis fo cuses on a task known as the indirect simultaneous positioning prob­

lem. The task requires accurate deformation control of a nonrigid obj ect. The desired 

configuration is prescribed by control points defined within the obj ect body. This de­

formation is achieved by applying forces to to manipulation points located elsewhere 

on the body. 

T his thesis approaches the problem using a linear robust output regulation frame­

work. This framework requires the following steps: 

1. construct a second-order dynamical model of the object 

2. linearize about the equilibrium point 

3. assess the controllability, observabili ty, and solut ion to the regulator equations 

4. compute the controller gains that solve the regulation problem 

T his control law approach is tested in both simulations using a nonlinear RKPr--I 
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model of a deformable object , and in experiments using a robot manipulator to ap­

ply the desired forces to the manipulation points of a physical, elastic, deformable 

object. This thesis proves the validity of this approach using homogeneous and non­

homogeneous planar objects , as well as multiple control point and manipulation point 

configurations. 
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Notation and abbreviations 

Abbreviations: 

FEM - Finite Element Methods 

RKPM - Reproducing Kernel Particle Methods 

SPH - Smooth Particle Hydrodynamics 

PIC - Particle in Cell 

DEM - Diffuse Element Methods 

EFG - Element Free Galerkin 

PBH - Popov, Belevitch and Hautus 

iVIIMO - Nlultiple Input, Nlultiple Output 

DOF - Degree of Freedom 

DLL - Dynamic Link Library 

GPU - Graphics Processing Unit 

SDK - Software Development Kit 

PI - Proportiona1, Integral 

PD - Proportional, Derivative 

PID - Proportional, Integra1, Derivative 

rvISD - Ivlass-Spring-Damper 

SVD - Singular Value Decomposit ion 
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Deformable Object Model: 

k - Euclidean-space dimension 

N - number of nodes 

d(·) E jRk N - deformation vector 

111 (.) E jRk N x k N - mass matrix 

V (-) E jRk Nx k N - damping matrix 

K (-) E jRk Nx k N - stiffness matrix 

13 E jRkNx m - influence matrix 

i T E jRPx k N - out put selector matrix 

p~ - ith control point 

P~n - ith manipulation point 

State-space System: 

n - state vector dimension 

m - input vector dimension 

P - output vector dimension 

Pm - measured out put vector dimension 

x ( .) E jRl1 - state vector 

u (·) E jRm - input or control vector 

y (.) E jRP - out put vector 

Ym (-) E JRPm - measured out put vector 

e (.) E jRP - error vector 

r (-) E jRP - reference t rajectory 
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p C) E ffi.np - external disturbance vector 

v (-) E ffi.np+p - exogeneous signal vector (disturbances and references) 

W (-) E ffi.n w - uncertainty vector 

A(·) E ffi.nxn - state matrix 

BC) E ffi.nxm - input matrix 

CC) E ffi.pxn - output matrix 

D C) E ffi.pxm - feedthrough matrix 

CmC) E ffi.Pm xn - measured output matrix 

Dm C) E ffi.Pm xm - measured output feedthrough matrix 

EC) E ffi.nxnp+p - matrix representing exogenous signal effect on state 

FC) E ffi.pxnp+p - matrix representing exogenous signal effect on error 

L(· ) E ffi.nxp - estimator gain matrix 

n u - process noise 

n Ym - measurement noise 

Robot Hybrid Control: 

Ba - actual robot joint angles 

Be - robot joint angle error 

Bes - selected subspace joint angle error 

Xd - desired end-effector posit ion/ orientation 

Xa - actual end-effector position/ orientation 

X e - end-effector position/ orientation error 

x es - selected end-effector posit ion/ orientation error 

f d - desired end-effector force / torque 
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f a - actual end-effector force/ torque 

f e - end-effector force / torq ue error 

f es - selected end-effector force/torque error 

T es - selected joint torque error 

T p - commanded joint torque from position 

T f - commanded joint torque from force 

5 - subspace selection matrix 

51.. - orthogonal subspace selection 
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Chapter 1 

Introduction 

Robot ics have become increasingly popular over the last 50 years, especially in indus­

tries for manufacturing, assembly, and mass production. In most of these applications 

the objects handled are assumed to be rigid. More recently, the use of robotics has 

expanded to other fields such as exploration and medical procedures. As the areas 

in which robots operate develops, t he tasks that t hey perform becomes more elabo­

rate and complex. These tasks may require interaction with obj ects t hat cannot be 

assumed rigid. In fact , t he task may require t he grasping and maneuvering of com­

pliant objects , cont rolling the specific deformation of the object , or both. Examples 

could include installing a rubber hose by stretching the opening over an exhaust port , 

tying a knot in rope or string, or folding a piece of textile fabric. In t hese cases, we 

not only need to accurately cont rol t he manipulators end effector , but to also pre­

dict t he motion of t he deformable obj ect in question in order to command t he robot 

intelligently. 

Research into deformable obj ect handling is primarily fo cused into two distinct 

fields: deformable obj ect modeling, and robotic control strategies. The former focuses 
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on improving the knowledge base of predicting how an object will deform given its 

properties and whatever information is available about its current state. The latter is 

concerned wit h planning and commanding t he robot manipulator given the knowledge 

of our object to precisely interact wit h said obj ects in a desirable fashion. 

This thesis fo cuses on the control design aspect, sp ecifically, in controlling t he 

deformation of the non-rigid object . 

1.1 Problem Statement 

The task addressed in t his thesis is to deform an object into a desired configura­

t ion as specified by a certain number of "control points" within t he object. This 

is accomplished by applying forces at different locations on the object , labeled as 

"m anipulation points." This is often referred to as the indirect simultan eous posi­

tioning problem. This problem is described here in t he 2-dimensional, planar case. 

The planar object is an elastic material that is required to be deformed in a specific 

way. The final shape is defined by specifying the desired locations of points on the 

object that are labeled as control points, p~ for i = 1, ... , N c . The deformation is 

accomplished by applying forces to separate points on the object , for instance at the 

object boundaries, t hat are labeled manipulation points, P~n for i = 1, ... , N rn . The 

problem then is to find t he manipulation point posit ions, or similarly t he input forces , 

that will cause the control point positions to converge to their desired locations. This 

is illustrated in Figure 1.1. 

For this thesis, we assume that the forces are applied to t he object using a robot 

m anipulator equipped with a force sensor at t he end-effector. Given a dynamic de­

formable object model that approximately predicts t he mot ion of t he material, t he 
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Figure 1.1: Deformable object showing manipulation points wi t h force inputs and 
control points wit h target position outputs . 

goal is t o creat e a control scheme that det ermines the force inputs while monitoring 

the output position of t he cont rol points. 

An illustrat ive example of t his task in the medical world is during a breast biopsy; 

t he needle is inserted into the tissue with the intention of extracting a sample from 

a specific t arget location. However , the needle can cause the t issue to deform and 

move t his t arget location resulting in a poor biopsy sample. If we monitor the target 

location using some imaging modality, and place robot ic paddles at the boundary 

of the t issue, then we can "stabilize" t he target location t o be on t he needle path. 

Another example found in the literature is when manipulating textile fabrics . Certain 

locations in the fabric may have required destinations t o complete a task , such as for 

a sewing operation. Clearly, the manipulator cannot move t he the specific locations 

directly or else interfere wit h t he sewing needle, mot ivating an indirect posit ioning 

3 
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scheme. 

1.2 Thesis Contribution 

This research proposes a solut ion t o the indirect simultaneous posit ioning problem 

based on a cont rol technique known as robust linear out put regulation. The cont roller 

will determine t he forces necessary t o apply to t he manipulation points in order to 

accurat ely deform the obj ect . Deformable object models based on mesh-free methods 

form t he basis for t his cont rol scheme. The model is linearized and t reated as a 

classic out put regulation problem. Using t his approach we can derive, systematically, 

cont roller gains that ensure stability and convergence of t he target cont rol point 

to desired set-point trajectories . Addit ionally, since deform able obj ect models can 

b ecome significantly complex, t he use of model reduction is examined in our cont rol 

scheme when determining the gains for a reduced-order cont roller. 

T he cont roller is designed using the following steps: 

1. IIodel t he deformable object using a suitable method such as FEiVI, mesh-free, 

mass-spring-dam per , etc. 

2. Linearize the model about t he undeformed state t o obtain a state-space repre­

sentation 

3. Apply model reduction to reduce t he state dimension of t he plant 

4. Test if t he regulation solut ion exists by performing stabilizabili ty, detectabili ty, 

and solvability tests on the model 

4 
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5. Formulate t he controller and state-estimator gains using linear robust output 

regulation theory 

The controller design is validated in simulations using MATLAB 's Simulink® and 

a nonlinear mesh-free deformable object model programmed in C++. Experiments 

were conducted using CRS Catalyst-5 robot manipulators to apply t he manipulation 

point forces to a soft liquid plastic object. A stereoscopic camera monitors the output 

posit ions of the control points using infrared LEDs for measurement feedback to the 

cont roller. The results demonstrate t he effectiveness of applying a robust linear out­

put regulation based control scheme to a robot manipulator to accurately manipulate 

a deformable object. 

Deformable obj ect models are becoming more readily available and better under­

stood , allowing more accurate and sophisticated control schemes to be developed. The 

benefits of incorporating robots to manipulate these objects can be realized , whether 

it be for automotive assembly tasks , textile fabric handling, or surgical procedures. 

Tasks that still predominantly require human workers can become automated to re­

duce costs, eliminate tiresome repetition , and increase precision and accuracy. 

1.3 Organization of Thesis 

Chapter 2 highlights the current state of research in t he area of deformable object 

manipulation. Chapter 3 outlines the basic theory behind formulating a robust output 

regulation control. Following, the details of performing model reduction on the object 

model are given in Chapter 4. Chapter 5 formulates t he control law as it applies to our 

models and details the simulation and experimental setup. The results of simulations 

5 
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and experimental tests are presented in Chapter 6. Finally, Chapter 7 discusses the 

conclusions regarding the results and recommendations for further developments. 

This research has resulted in the following papers: 

• Fanson, R. and Patriciu , A. (2010). "Model Based Deformable Object iVla­

nipulation Using Linear Robust Output Regulation" . In Proceedings oj the 

IEEE/ RSJ International ConJerence on Intelligent Robots and Systems (IROS). 

(To appear.) 

• Fanson, R. and Patriciu , A. (2010). "Robotic Assisted Deformable Object Ma­

nipulation. " In preparation to be submitted to the International Jo'urnal oj 

Robotics Research (IJRR). 

6 



Chapter 2 

Literature Review 

There are numerous industries that benefit from the ongoing research of deformable 

obj ect manipulation tasks such as knot tying, assembly of rubber parts, textile fabric 

handling, sheet metal handling, and medical robotics, to name a few. The active 

areas of research can be divided into four main categories: object modeling, planning 

and control , collaborative systems, and industrial experiences (Henrich and Worn, 

2000). In this thesis, the primary fo cus is on the control aspect . Nlore specifically, 

the goal is to accurately control the specific positions of points within a deformable 

object. In much of the literature, this task is referred to as indirect simultaneous 

posit ioning. The basis for the controller is a deformable object model constructed 

from one of several approaches available to approximate the obj ect deformation. In 

this section, we highlight some previous research in the areas of deformable object 

modeling and robotic interactions with non-rigid materials. 

7 
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2.1 Deformable Object Modeling 

Deformable obj ect modeling emerged for use in computer graphics. The applications 

have grown from early use in animation, to a basis for t raining in virt ual reality 

simulators, and recently hapt ic environments and robot ic deformation cont rol. lVlany 

of the methods that have been explored throughout t he years are summarized in a 

recent survey by Gibson and t-,/lirtich (1997). 

For animation purposes, many of t he early techniques were based on non-physical 

models, where the designer simply defines the desired deformation manually using 

some control points or parameter adjustment. The obj ect 's curve or surface would 

be inferred from these points using some mathematical interpolation such as a cubic 

spline. Later models become more based on physical representations of objects rather 

t han a manual definit ion of t he deformat ion. Taking advantage of growing compu­

tational power , this shifts t he workload of defining the deformation onto computer 

calculations rather than an animator 's manual specificat ion. Much of these physi­

cal models are based upon mass-spring-damper networks. Platt and Badler (1981) 

demonstrate t his in early work by using tension nets to animate facial expressions. 

Terzopoulos and \i\laters (1990) used a dynam ic mass-spring-damper model consisting 

of t hree separate layers of t issue to model the human face. 

Mass-spring-damper models are intuit ive and well-understood , however the ap ­

proximation is often crude and may not t ruly represent t he physical system. Also, 

it can be difficult to approximate the spring stiffness and damping coefficients of the 

physical objects . Current deformation analysis is generally done using models t hat 

are derived from equations of continuum mechanics, such as fini te element methods 

(F EM). FEM models can be used to perform both stat ic analysis to determine the 

8 
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final deformation of an object given a set of external forces, or dynamical analysis 

where the inertial and damping (or viscous) forces are also taken into account. Ex­

amples of FEM use in deformable object modeling can be found in Gourret et al. 

(1989) who use FE}.;! to animate the deformations t hat occur between a human hand 

and a deformable obj ect in a grasping task . Bro-nielsen and Cotin (1996) apply FEM 

to predict real-time t issue deformations for use in virtual reality surgical simulators. 

Although FElV! maintains a dominate role in deformation analysis in many fields, 

large deformations or structural changes often involve recomputation and remesh­

ing of t he obj ect. Recent ly, there has been significant development in mesh-free 

methods that can handle t hese large deformations without t he need for remeshing 

computations. These methods approximate the deformation using only nodes and no 

elements or mesh . Several variations exist including Smooth Particle Hydrodynamics 

(SPH), Particle in Cell Methods (PIC) , Diffuse Element Methods (DEM) , Element­

Free Galerkin Methods (EFG) and Reproducing Kernel Particle f.,/!ethods (RKP M) 

(Chen et al. , 1996). A survey of these methods is presented in Belytschko et al. (1996 ) 

and more recent ly in Babuska et al. (2002). Chen et al . (1997) describe the details 

of using the RKPM method to approximate large deformations in nonlinear bodies. 

They then employ this method to perform large deformation analysis of hyperelastic 

and nearly incompressible rubber materials. 

The control law in this thesis is derived independent of t he modeling technique 

used and assumes only that t he method provides a dynamic analysis of t he deformable 

obj ect. The dynamic model then yields a second order different ial equation of t he 

form 

NI (d)dO + V(d, d)d + K (d)d = f . 

9 
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For the simulations a experimental results presented in this t hesis, we use the RKP NI 

method for the deformable objects model and the basis for the controller derivation. 

2.2 Robot and Deformable Object Interaction 

Although much of the deformable object modeling developed to this date was influ­

enced by the needs of the computer animation world, their use in robotics is spawned 

by a growing need for automated deformable object interactions in industry. A recent 

overview provided by Henrich and \i\1orn (2000) outlines a few of the research papers 

published with regard to modeling, control , and industri al applications of robotic 

manipulation of deformable objects. Addit ionally, Saadat and Nan (2002) describe 

much of the industrial applications that have focused on being able to manipulate 

deformable objects. According to Saadat , specific industrial tasks are defined and 

categorized based on either 1D (linear), 2D (sheet/planar), and 3D materials. Cur­

rently, t he majority of research is focused on 2D applications and motivated by fabric 

and garment applications, but as robotics in medical and food industries become more 

popular , much new research may shift towards 3D applications. 

rVluch of the linear robotic and deformable object research is fo cused on manipu­

lation of wires , cables, ropes , and knot-tying tasks. Chen and Zheng use cubic spline 

functions in conjunction with a vision system to approximate beam deformation in 

Chen and Zheng (1991) and use this model to mate a flexible beam with a rigid hole in 

Zheng et al. (1991). \i\1akamatsu et al. model linear objects by minimizing the poten­

t ial energy of the object subj ect to the geometric constraints as seen in CWakam atsu 

et al., 1995) , CWakamatsu et al., 1996), (\i\1akamatsu et al. , 2002), and (vVakamatsu 

and Hirai, 2004). Nakagaki et al. (1997) expand on the modeling work of \i\1akamatsu 
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for inserting a flexible beam into a rigid hold. They account for plastic deformation 

of a wire by measuring the wire shape via a stereoscopic camera and measure the 

force at the tip of the wire. 

For practical deformable object manipulation , the notions of image-based feedback 

and object modeling are indispensable. They are a common basis in most applications 

of deformable object manipulation where the desired task is to accurately control t he 

deformation of a soft obj ect. This generally involves defining certain points within 

the object which are manipulated inputs, and certain points within the object that 

are monitored output positions to be controlled , commonly referred to as indirect 

simultaneous posit ioning. 

2.2.1 Indirect Simultaneous Positioning 

The indirect simultaneous positioning problem was first addressed in \i\Tada et al. 

(1998) . Their work focuses primarily on textile fabrics which they model using a 

mass-spring-damper system and use the linearization of t his model as t he basis for 

t heir control law. The control law is based on a J acobian relationship between the 

manipulation and control points. The convergence of the control points to their 

desired positions is based on iterative control method that incrementally determines 

the manipulation points that will result in the desired control points. vVada et al. 

(1999) then also incorporate the planning of robot finger location, and in vVada et al. 

(2001 ) they incorporate PID control on the feedback to ensure robustness on an 

approximate model , provided the deformation is not too great for the given model. 

Shibata and Hirai (2006) use a similar model based PID control to control the 

posit ion and deformation of a soft object. However , they use this to determine the 
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force inputs at certain location on the object t hat are required to achieve the desired 

posit ions of other points. Also, their tests only confirm the stability on a linear , 

I-dimensional, mass-spring-damper models. 

Smolen and Patriciu (2009a) take a slight ly different approach which uses the 

reproducing kernel particle method (RKPM) to model t he deformable object. The 

model is used to ca.lculate a J acobian transformation between the manipulation points 

and the control points such that t he manipulation points are moved incrementally to 

posit ions t hat will yield t he desired control point locations. 

2.2.2 Needle Target Stabilization 

Significant literature in deformable object manipulation is fo cused on medical needle 

insertions. In t his application, typically t here is a target location with a soft t issue 

where a task must be performed, such as taking a biopsy sample. Upon insertion of 

t he needle, soft obj ects typically undergo deformation that causes t he target point to 

move. A possible solut ion involves having the surgeon use steerable needles and image 

guidance, such as ultrasound, to try to hi t t he target. The work of Di r./Iaio in Di­

IVIaio and Salcudean (2003a) , DiNIaio and Sa.lcudean (2003b) , DiMaio and Salcudean 

(2005b) , and DilVIaio and Salcudean (2005a) , focuses on combining deformable object 

and flexible needle models to determine a complex needle trajectory t hat accounts 

for any deformation of the target or needle in t he insertion process. 

Other research shows promising results of using robot manipulators at the bound­

ary of the tissue to instead keep the target location on the needle path. A noteworthy 

paper by Mallapragada et al. (2007) describe a PI cont rol scheme to keep a target 
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biopsy location on a needle path defined in a plane. They apply forces on the bound­

ary of a cylindrical obj ect using two, 1-DOF robotic fingers posit ioned 900 to each 

other and a fixed boundary opposite each finger. In Torabi et al. (2009) the infor­

mation about t he target point and potent ial obstacles is used to plan manipulation 

point locations and the needle insertion site for prostate biopsies. The manipulators 

actuate one at a t ime in a phased cont rol scheme as t he needle is inserted to both 

avoid sensit ive tissues and minimize t argeting errors. The control is verified using 2D 

nonhomogeneous mass-spring tissue models. Smolen and Patriciu (2009b) stabilize 

t he target to the needle path using an RKPM model and a J acobian relationship be­

tween a paddle placed at t he obj ect boundary and the target point . Their simulations 

t est both a static paddle and dynamic paddle placement . Their results show that a 

st atic paddle placed opt imally at a boundary location can help minimize targeting 

error but depends greatly on t he object propert ies . In contrast , a dynamic paddle 

placed at a location t hat gives opt imal cont rol over t he target location is much more 

justified for nonhomogeneous obj ects . 
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Chapter 3 

Output Regulation Control 

The cont rol law applied t o t he deformable obj ect is based on a dynamic second­

order model of a discretized obj ect, such as fini te element model, mesh-free model, or 

mass-spring damper system. The nonlinear dynamic system can t hen be linearized 

about t he equilibrium point , and reformulated to a set of first order different ial equa­

tions and represented as a st ate-space model. This form allows the problem to be 

approached as a classic output regulation control problem. Any nonlinearit ies , mod­

eling uncertaint ies, and unknown disturbances t o t he system that cause a deviation 

from t he nominal plant within some open neighbourhood, are compensated wit h a 

robust controller. The next sect ions out line t he linearization and reformulation of t he 

dynamic model into a state-space system and t he derivation of a robust cont rol lmv . 

3.1 State-Space Representation 

Assume t hat a deformable object is discretized and modeled using N points , or nodes , 

distributed t hroughout the body. The cont rol points, P~ and manipulation points, P:n 
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are assumed to be explicitly included as nodes . The object can be linear , planar , or 3-

dimensional. Let the number of space dimensions be k and therefore t he displacement 

of each node can be represented by a vector (or scalar) in ]Rk . Let the displacement of 

all nodes be represented by the stacked vector d(t) E ]RkN . In general, the equations 

of motion for t he object can be described by the second order system 

NI(d)d(t) + lI(d, d)d(t) + K (d)d(t) = f (t). (3 .1 ) 

The kN x kN matrices M(d), lI(d, d), and K (d) represent the mass, damping, and 

stiffness matrices, respectively, and f (t) E ]RkN represents t he vector of external force 

distribution applied to each node. The mass , damping, and stiffness matrices are most 

likely to be non-linear. This dynamical form is shown to be obtainable from several 

different deformable object modeling approaches in Gibson and Mirtich (1997). 

Our goal is to linearize and reformulate the nonlinear dynamical model to a fa­

miliar , cont inuous, t ime-invariant state space representation 

x (t ) = Ax(t) + Bu(t) 

y (t) = Cx(t) + Du(t) (3 .2) 

where x (t) E ]Rn is t he state vector , u (t) E ]R71l is the input vector , y (t) E ]RP is the 

output vector. Note t hat by doing so, t he linear model is only a good approximation 

for deformations within a certain neighbourhood of t he equilibrium point. 

Referring to t he dynamical model (3.1 ), assuming that the control points coincide 

with nodes of the discretized model, t he outputs for this system are simply the posi­

t ional displacements of these nodes. Accounting for output , the dynamical system is 
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now described by 

j\!J (d)d(t ) + V (d, d)d(t ) + K (d)d(t ) = Bu(t ) 

y (t ) = i T d(t ). (3.3) 

The matrix i T E lR,pxkN is a selectoT matrix with entries of simply 1 or 0 'which define 

which displacements represent t he posit ions of our cont rol point nodes of interest 

The notation i T was chosen to be consistent with model reduction presented in 

Chapter 4. Note t hat t he framework does not chan ge if the control points do not 

coincide with model nodes but rather lie somewhere in between. The out put of control 

point displacements could t hen be defined as some interpolation of t he displacements 

surrounding nodes, result ing in a more complex output matrix. The assumption 

merely simplifies the formulation for clarity. Addit ionally, t he external force vector is 

decomposed into f (t ) = Bu(t ) such t hat u (t ) E lR,m includes only input (or control) 

force signals and B in an influence matrix that describes how they distribute amongst 

t he individual nodes. 

First , rearrange t he system in (3 .3) to 

d(t ) = -lVJ (d)-l K (d)d(t ) - lVJ (dt ll/ (d, d)d(t ) + lvl (d)-l Bu(t ) 

y (t ) = i T d(t ) (3.4) 

where t he mass matrix JVJ is posit ive defini te for a deformable obj ect and therefore 

invert ible (Gibson and Mirtich , 1997). 

Note t hat t his is still a nonlinear system that would be best described in state 
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space form as 

x (t ) = f (x (t ), u (t )) 

y (t ) = h(x(t ), u (t)). (3.5) 

Therefore, we linearize the system about t he equilibrium point by evaluating the 

lVI (d ) , V(d, d ), and K(d) matrices of t he object at the undeformed state. In other 

words , we extract from our model M(O) , V(O , 0), and K (O), which we will abbreviate 

to simply .Af, V , and K. Then, re\vrite (3.4) and including the trivial equation d = d 

to yield 

d = d 

d = _1\/[ -1 K d - lVI- 1 V d + 1\/[-1 Bu 

or in matrix form 

(3 .6) 
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By choosing the st ate x ~ [dT Z 1 T we can write 

x = Ax + Bu 

y=Cx (3.7) 

where the linear st ate space matrices are 

Note that these matrices are effectively t he same as finding the partial derivatives of 

our nonlinear state-space equation in (3.5): 

fJf 
A = ~(O, O ), 

u X 

fJf 
B = fJu (0, 0), 

fJh 
C = ~(O, O) , 

u X 

fJh 
D = fJu (0, 0) 

evaluated at the origin (x , u ) = (0, 0). This linear , time-invariant st ate space model 

of our deformable object will be used for t he out put regulation control described in 

the next section. 

3.2 Regulating Control Law 

Here, we consider the linearized state-space model described in t he previous sections 

and formulate a robust cont roller t hat will compensate for the modeling uncertain-

t ies and nonlinearities . Much of this formulation is based on t he output regulation 

theory first described by Francis (1977) and further detailed in Huang (2004) . For 
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completeness , the key concepts of t he control law formulat ion will be highlighted in 

t his section . This section follows t he formulation presented in Huang (2004). For 

furt her details t he reader is referred to his work. 

3.2.1 Linear Output Regulation 

\ /Ile begin by taking t he general state-space model of a linear t ime invariant system 

subject to disturbances, p . 

x = Ax + Bu +Epp 

y = Cx + Du + Fpp . (3 .8) 

Given a reference t rajectory, T(t), t he t racking error we wish to regulate is 

e (t) = C x + Du + Fpp - T . (3 .9) 

The goal is to find the control signal, u (t) such t hat 

lim e (t) = 0 
t -+oo 

If we combine the dist urban ces and reference t raj ectories into a vector v ~ [rT pT 1 T 

represent ing all exogenous signals wit h known dynamics to be v = Al V , we can rewrite 
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t he plant and exosystem as 

x = Ax + Bu + Ev 

e = Cx + Du + Fv. (3. 10) 

where E = [0 Ep] and F = [ - I Fp] . 

A solution to t he regulation exists if there exists matrices X and U such t hat 

X A l = AX + B U + E 

0 = CX + D U + F. (3 .11 ) 

These are known as the TegulatoT equations. In fact, Huang (2004) shows that a 

solution exists if t he following condit ions are satisfied: 

Condition 3.1. The paiT (A , B ) is stabilizable 

Condition 3.2. The pm" ( [c F 1 ' [: :]) U detectable 

[

A - AI 
Condition 3.3. FOT each eigenvalue, A, of the matTix AI , we have rank C :] 
n+p 

To help interpret the regulator equations, consider t he simplified problem where 

t he plant is disturbance free and the exogenous system consists of only set-point 
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reference trajectories. Therefore Al = 0 and 

± = Ax + Bu 

y = Cx+ Du. (3.1 2) 

In order to achieve regulation, t here needs to be a final equilibrium state, x *, and 

control signal, u * , such t hat the system dynamics have reached steady-state and the 

system output has reached the reference signal. Mathematically, 

lim ±(t) = Ax* + Bu* = 0 
t -->oo 

lim y (t) = Cx* + Du* = T. 
t -->oo 

(3. 13) 

\ Ale can write this as 

[~ ~] [::] [:] (3. 14) 

for which a solut ion exists if the matrix on the left has full row rank , implying we 

must have at least as many control inputs, 1n, as outputs, p. A unique solut ion exists 

if t he matrix is invertible which would imply the number of control inputs, m , equals 

t he number of outputs, p , and condit ion 3.3 is satisfied. This gives 

(3. 15) 

Vlada et al. (1999) emphasize the condit ion t hat t he number of manipulation points 

must at least equal the number of control points. However , they do not explicit ly 
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state that t here may be boundary condit ions or characteristics of t he object which 

forbid a solut ion. Condi t ion 3.3 is essent ial t o ensure a solution exists. 

Furt hermore, if m > p and the solut ion t o (3. 14) does exist, t here are mult iple 

solut ions for x* and u *. One possible solut ion is the right pseudoinverse represented 

by 

(3.16) 

In the sit uations where m > p it may be advantageous t o use the extra degrees of 

freedom t o impose addit ional constraints on t he system. In fact t he pseudoinverse 

stated above results in t he min-norm solut ion which minimizes t he 2-norms of t he 

final state x * and cont rol signal u *. 

From t hese linear equations, when t he solut ion does exist , we can find x * = X r 

and u * = Ur . At steady-st ate t his gives, 

± = AXr + B Ur 

y =CXr+ DUr. 

For t his t o be equivalent to equations (3.13) we need X and U t o satisfy 

0 = AX + B U 

0 = CX + D U - I 

(3. 17) 

(3 .18) 

which are exactly t he regulator equations for t he set-point, disturbance-free case. 

To obtain the generic regulator equations we simply reint roduce t he disturbances 
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to the exogenous signal v with matrices E = [Ep 0] and F = [Fp - I]. In this 

case, the dynamics will not settle to zero, but rather to an invariant subspace 'which 

is a mapping of the exogenous signals x = X v and thus x = X V = X A 1 v , yielding 

x = (AX + B U + E)v = XA1v 

e = (CX + DU + F)v = O. (3 .1 9) 

where the feedforward control signal u = U r keeps the error e at zero (Isidori et al. , 

2003). At the heart of t he regulation problem is asymptotically approaching this 

invariant subspace for any initial condit ions. 

For the proof that a solut ion to the regulator equations still exists , the reader is 

referred to Huang (2004) and Isidori et al. (2003 ). 

As explained in Huang (2004), assume that the full- state is available for feedback 

and that t here is no uncertainty about t he plant . The controller considered to solve 

the regulation problem is given by 

(3.20) 

Under this control scheme, the closed loop system becomes, 

x = (A + BKx)x + (E + BKv)v 

e = (C + DKx)x + (DKv + F) v (3 .21) 

From before, we know that if t he system can be regulated , t he steady-state trajectories 
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will be 

. * (X) X· XA x = v = v = lV 

x * = Xv 

u * = Uv 

e = O. 

The closed loop system is now 

XA1v = (A + BKx)Xv + (E + BKv)v 

0= (C + DKx)Xv + (DKv + F)v 

(3.22) 

(3.23) 

From t his, to achieve regulation we could design Kx to stabilize (A + BKx), t hen 

solve (3 .23) for X and Kv to get the final controller (3.20). However , this would 

require resolving for X and Kv for every redesign of the matrix K x. Noting also our 

controller form (3.20), on t he invariant subspace we have the input signal 

(3.24) 

Substituting (3.24) into (3.23) to eliminate Kv and K x and dropping the common v 

terms results in the regulator equations (3.11 ). Thus we can instead solve for X and 

U from (3 .11 ) independently from designing Kx and Kv 

The controller that solves the regulat ion problem can be summarized as follows: 

1. Solve the regulator equations (3 .11 ) (if possible) for X and U 
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2. Design the feedback gain matrix K x such t hat (A + BKx) is stable 

3. Design t he feedforward gain matrix Kv such that K v = U - K xX 

The static state feedback controller is t hen given by (3.20). 

3.2.2 Regulation with an Observer 

The controller given in (3.20) assumes that the full- state is available for feedback. For 

a deformable object model, this may not be realistic. The number of discretization 

points , or nodes, can become quite large and it is unlikely that t he position and 

velocity of both the x- and y-direction of each node is available for full state feedback. 

The solut ion is to employ a state estimator or observer. The control form becomes 

u = K xx + K vv 

:i; = Ax + Bu + Ev + L(Yrn - Cm x - Dmu ) (3 .25) 

Note t hat we have used the subscript m to differentiate between measured output Y m 

and regulated output Y for cases when we can measure more outputs to improve our 

estimation. 

Let t he closed loop system state be X c = [xT ea?]T , where ex = X - x is the state 
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estimation error. The closed loop system becomes 

- BKx 1 [E + BKv1 X c+ v 
A - LCm 0 

(3.26) 

By the well-known separation principle, the closed loop system is stable as long as 

the blocks (A + BKx) and (A - LCm) are each stable. 

The controller is now designed from 

1. Solve the regulator equations (3.11 ) (if possible) for X and U 

2. Design the feedback gain matrix K x such that (A + BKx) is stable 

3. Design t he feedforward gain matrix K v such that K v = U - K xX 

4. Design the estimator gain matrix L such that (A - LCm ) is stable 

and implementing the cont roller (3. 25) . 

3.2.3 Linear Robust Output Regulation 

Often the nominal values of the plant matrices have uncertainty included such that 

the plant model is described by 

(3 .27) 
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where t he subscript w indicates t he state-space matrices deviate from their nominal 

values such t hat 

Aw = A + 6.A , Bw= B + 6.B , Ew = E + 6. E 

Cw = C + 6.C, Dw = D + 6.D , 

The classical out put regulation considers t he case where exogenous signals, v , 

are generated by v = A lv. However , for t he task at hand we will consider set-

point inputs and assume no disturbance signals, making v constant and therefore 

A l = O. As before, t he effect of t he exogenous signals on the system is incorporated 

by E = [0 Ep ] , and F = [- I Fp ] . 

Following Huang (2004), if the full state is available, the control law can be used 

for robust output regulation is of t he form 

(3.28) 

where x is t he plant state vector , and z is a dynamic controller state vector to be 

defined later to ensure robustness. The closed loop system , with augmented state 

X c ~ [xT zT f, becomes, 

(3 .29) 
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where 

r

Aw + BwKl BwK2 1 
Acw = 

G2 ( Cw + DwK l) G1 + G2DwK2 r 
Ew 1 Bcw = 

G2Fw 

Ccw = [Cw + DwKl DwK2] , Dcw = Fw· (3.30) 

Let the nominal plant values of this closed loop system be Aco,Bco,Cco,Dco. T he 

output regulation problem now requires to design a controller such that 

l. The matrix Ac o is Hurwitz 

2. For uncertainties, W with some open neighbourhood, HI, the error trajectory 

satisfies 

lim e(t) = lim (Ccw x c(t) + Dcwv(t)) = o. 
t -+oo t-+oo 

(3.31) 

Huang shows that this is equivalent to finding t he unique matrix X cw t hat solves 

the matrix equations: 

(3 .32) 

v\Then the desired reference signals are constant , t hen X cw Al = O. 

Equations (3.32) are solvable if (Aw , Bw) is stabilizab le, (Cw , A1v ) is detectable, 

and 

(3.33) 

where 11, is t he total number of states and p is the number of outputs to be regulated . 

28 



M.A.Sc. Thesis - Richard Fanson McMaster - Electrical Engineering 

Put another way, (3.32) requires there to be a mapping to an invariant subspace 

of the form 

v = {(x , z ,v ) : x = XV ,z = Zv} . (3.34) 

Given controller form (3.28), this subspace requires there to be matrices X w and Uw , 

that solve the plant equation 

XWAI = AwXw + BwUw + Ew 

o = CwXw + DwUw + Fw 

as well as a matrix Zw to solve the controller equation 

ZwAl = G1Zw + G2 (CwX w + DwUw + Fw) 

Uw = K1Xw + K 2 Zw· 

(3 .35) 

(3 .36) 

Equations (3.35) are the robust version of our regulator equations and equations 

(3.36) expresses that our controller contains an internal model. Combining (3 .35) 

and (3.36) we can rearrange to 

X wA] = (A + BKd X w + BK2 Zw + Ew 

ZwAl = G2 (Cw + DwK l)Xw + (G1 + G2DwK2)Zw 

0 = (C + DKdXw + DK2Zw + Fw. 
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Equations (3.37) are in fact the same as (3 .32) with 

The problem now is essentially finding a solut ion to the invariant subspace represented 

by (3.37) from the regulator equations (3.35), and the internal model (3.36) and 

designing a controller to asymptotically approach this subspace. 

Huang (2004) shows that if the dynamic portion of the controller i = G1z + G2 e 

contains an internal model of the exogenous signals, and (A, B ) is stabilizable, then 

the pair 

is also stabilizable. In fact , t his pair corresponds to the augmented system, 

x = Ax+Bu+Ev 

e = Cx + Du +Fv (3.38) 

where the augmented plant matrices are 

Then, a stabilizing controller for the augmented system leads to the solution for the 

linear robust output r gulation problem (Huang, 2004). 
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In order to incorporate an internal model, t he matrices Gl and G2 can be defined 

wi th the form 

o 

o 

o 

I 

o 

o 

o 

o 

o 

o 

o 

I 

where I is t he dimension of the error vector e and CYl . .. CYk-l are the coefficients of 

the minimal polynomial of AI: 

For more details regarding the formula t ion of a controller with the internal model 

principle, t he reader is referred to Huang (2004) and Isidori et al. (2003). 

In addition to the dynamic controller state z, as before, t he positions and velocit ies 

must be estimated using a state estimator. This is accomplished by including another 

dynamic state in the controller , X. T he neyv controller becomes 

u = 1(lX + 1(2Z 

Z = G1z + G2e 

± = Ax + Bu + E v + L (Ym - Cm x - Dmu ) (3.39) 

where L is the observer gain matrix and x is the estimation of our state variables. 

Note. again, the subscript m to differentiate between Ym and y. Again, we need to 
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design L such t hat A - LCm is Hurwitz to ensure the observer error asymptotically 

decreases to zero. 

To show that this will still solve the output regulation problem we need to show 

that the closed loop system is stable. Let the closed loop state be X c = [xT ZT ex T]T , 

where we will use the error of the observer , e x, instead of the observer state, x because 

it gives a more useful realization. The closed loop system matrix Ac becomes: 

A + BK1 BK2 - BK1 

Ac = G2(C + DJ( l ) G1 + G2DK2 -G2DK1 

o 0 A - LCrn 

By the separation principle, t he eigenvalues of the closed loop system are the union 

of the eigenva1ues the augmented system (3.38) and (A - LCm ). Since K 1 , K2 and 

L are designed such that (3.38) and (A - LCrn ) are stable, the closed loop system is 

stable. 

The overall process can be summarized as follows: 

l. r-,/Iodel t he object using the preferred method (e.g. FEM, mesh-free, etc. ) 

2. Linearize the model about the undeformed state to extract the state space model 

matrices A , B , C , and Cm (D and Drn are zero). For these models, we assume 

no disturbances, therefore E = 0 and F = - 1. 

3. Test that (A , B) is stabilizable 

4. Test t hat (A , C) is detectable 

5 Test t hat rank [; : ] ~ n + p 
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6. Find G1 and G2 such that z = G1z +G2e incorporates an internal model of A 1 . 

7. Augment the system model, as in (3.38) 

8. Find fixed gain matrix J{ = [J{ 1 J{ 2] such that A + B J{ is stable 

9. Test that (A , Crn) is detectable (if using measured output Yrn) 

10. Design observer gain matrix L such that (A - LCm ) is stable 

11 . Implement controller (3 .39). 
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Chapter 4 

Model Reduction and Reduced 

Order Control 

Deformable object approximations for physical systems, such as finite element meth­

ods, have become increasingly popular and quite accurate in predicting the behaviour 

of physical systems. However , as the level of detail and accuracy of the models in­

crease, so too does the dimensionality. This can lead to large computational expenses 

and lead to simulations that no can no longer be used for real-time control. In order 

to overcome the dimensionality problem, a technique know as model-reduction can 

be used. This involves creating a system of much lower dimension that still captures 

the important characteristics of the original systems response. Primarily, there are 

two methods of achieving this reduction: SVD-based and moment-matching based 

methods (Antoulas et al. , 2001 ). 

The model reduction problem is outlined in Antoulas et al. (2001 ) and restated 

here for completion. The problem involves a full dynamical system model as defined 
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by 

2:: 
{ 

x (t) 

y (t) = ex + Du(t) 

= Ax(t) + Bu(t ) 
(4. 1 ) 

which we will abbreviate to 

The object of model reduction is to find a much smaller order system 

with n < n that approximates the original system. The approximation must ensure 

a significantly small error in a region of interest, and t hat properties such as stabili ty 

and passivity are preserved. 

Recall t hat vve are concerned only with the dynamical model of a deformable 

object which can be represented by a second-order different ial equation, 

!I1(d)d + V(d, d)d + K(d)d = Bu 

and in state-space with matrices, 
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and the state 

x(t) = [~ (t)] . 
d(t) 

Because of the second order structure of our system, and the state-space matrices have 

a natural partitioning within t hem , we follow a reduction method that preserves t his 

structure. There are several papers t hat fo cus on reduction of this type or model such 

as Chahlaoui et al. (2005) , Bai and Su (2005) , Li and Bai (2005) , Li and Bai (2006), 

and Lin et al. (2007). The common procedure involves using a moment-matching type 

reduction via an Arnoldi method to project onto a Krylov subspace. In t his thesis, 

we use the algorit hm reported in Li and Bai (2006), which is summarized below. 

Let t he second order system be arranged in a slightly different state-space form 

and include the desired output , dropping parentheses for clarity: 

[_: :]x+ [: :] x~ [:] u 
y = [iT 0] X 

where VV E jRNxN can be any nonsingular matrix (often set to eit her - JVl for sym-

metry or I for simplicity) . Let these matrices be defined as 

CR= [ V MOi] 
- VV 

(4.2) 

with C E jRl1xn G E jRnxn B E jRl1xm and LT E jRPxn The subscril)t R is R , R , R , R . 

used to denote t heir use in t he reduction algorithm and avoid any confusion between 
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similarly named matrices presented in this t hesis. 

The frequency domain transfer function for this MIMO system , ~ , in this form 

can be expressed 

The reduced transfer function of t he system ~ sought is 

where C' E ffi,11xn G E ffi,nxn iJ E ffi,nx m and iT E ffi,pxn The reduction is achieved R , R , R , R 

by using proj ection matrices X , Y E ffi, 71 xn such that 

Because of t he second order nature of the system we can notice the matrices in 

(4.2) have a natural partition into blocks as in 

711 712 711 1],2 

711 
[ C

R
" 

CR1 2 

1 ' 
711 

[ G
R

" 
GR 12 l CR = GR = 

712 CR21 CR 22 112 GR 21 GR 22 

m p 

111 

[ En, l 711 

[ L
n

, 1 BR = LR = 

11 2 BR2 712 LR2 
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where nl + n2 = n. The proj ection is performed by defining X and Y as 

where hI + h2 = h , such that the submatrices of the reduced system are in fact t he 

reduction of the submatrices. For example: 

[
X 0 1 
0

1 

xi 

and correspondingly, for all submatrices, 

G
A 

- , ,rTG X 
R;,j - 1 i R;,j j , 

The X and Y projection matrices are found using an Arnoldi implementation as 

stated in Li and Bai (2006). First, consider a few important concepts from Li and 

Bai (2006). 

The power series expansion of H (s) at s = 0 is given by 

00 

H ( s) = I) - 1 t Si ]V[i (4.3) 
i=O 
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where f\lIi are t he moments. The reduced model has k matched moments around s = 0 

if l vri = 1Ilri for 0 :s; i :s; k - 1, or equivalently, H (s) = H (s) + O(Sk). Additionally, 

define the kth Krylov subspace as 

lCk(A , Z) ~ span(Z, AZ, ... , Ak- 1 Z) . 

As st ated in Li and Bai (2006), if 

lCk(GE/CR , GE/ BR ) ~ span (X ) 

lCr (GEt C~ , GEt L R) ~ span (Y) 

(4.4) 

(4.5) 

(4. 6) 

then H (s) = H (s) + O(sk+r) . Therefore , by finding X and Y which spans t he 

Krylov subspaces (4. 5) and (4.6), then we have found a reduced system with k + T 

matched moments. Furthermore , if we define liV in (4. 2) as - M , t hen CR and GR 

are symmetric. This symmetry, as st ated in Li and Bai (2006), allows us to find X 

according to t he Krylov subspace 

(4.7) 

Then by set t ing X = Y t he reduction satisfies H (s) = H(s) + O(S2k) . 

Finally, as first mentioned in Su and Craig (1991), a key aspect to retaining t he 

second order nature of t he system comes from the st ructure of the matrix GE/ C R as 

seen in t he lVII f.-/IO t ransfer function in t he general form 

39 



M.A.Sc. Thesis - Richard Fanson IVIcIVlaster - Electrical Engineering 

and from our desired Krylov subspace projection 

Because t he block structure of 

contains lower left block of the form a1 and lower right block of zero , it can be proven 

[Su and Craig (1991 ), Li and Bai (2005)] t hat 

This allows X and Y to be defined using only Xl as 

in order to keep t he second order structure while performing the moment-matching 

reduction. 

Using these facts , t he full Arnoldi-based reduction can be out lined in Algorithm 

4.l. In this implementation for second-order structure-preserving reduction, t here is 

only control of two design parameters: So - t he frequency around which the moments 

are matched , and k - t he order of moments matched. 

For more detail and proofs of the Krylov subspace projection method of model 
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Algorithm 4.1 Arnoldi-type reduction a.lgori thm: 

Set (;.R = GR + soC; 
Solve (;.RQ = BR for Q 
for j = 1 to k - 1 do 

Solve (;. RQ = C RQi for Q 
for i = 1 to j do 

Q = Q - Qi(QrQ) 
end for 
Qj+l = ort h ( Q) 

end for 

Par t it ion X = (Ql Q2 

red uction used in this t hesis see Li and Bai (2005) and Li and Bai (2006) . 
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Chapter 5 

Simulation and Experimental 

Setup 

This chapter describes the control law formulation more specifically as it applies to 

our deformable obj ect models using the theory outlined in Chapter 3 and Chapter 4. 

Additionally, t he simulations and experimental setup are described in detail. 

The use of robust output regulation control theory on deformable is validated 

through both simulations performed in MATLAB and experiments using robot ma­

nipulators and liquid plast ic deformable objects . T his section outlines the cont rol 

steps used for accurate robotic manipulation of deformable objects in simulations 

and experiments. For all simulations and experiments presented in t his t hesis we use 

only pla.nar deformable objects. The deformable object simula.tions were designed 

to mimic their experimental object counterpart part so that t he same control law 

derived in the simulation would be used to drive the robot manipulator in the exper­

iments. The methods and details of the simulation are outlined in Section 5.1 and 

the equipment and experimental setup in Section 5.2. 
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5.1 Simulation Setup 

This section outlines the control design procedure as it applies to t he deformable 

obj ects used in both simulations and experiments. The same cont rol scheme is used 

in the experimental setup . 

Deformable objects were modeled using a meshfree continuum model known as 

the reproducing kernel particle method (RKPM) based on the findings of Chen et al. 

(1996). These models are implemented in C++ and based on the stress-strain char­

acteristics of a soft plastic object , plan ar obj ect that will be used in t he experimental 

tests. The characteristics are obtained from recording deformation and force charac­

teristics using a camera and robot manipulator. Then the parameters of the model 

are optimized to match the deformation t hat occurs under load in t he real obj ect . 

The details of determ.ining the object parameters are shown in Appendix A. It should 

be noted t hat t he RKPM model was implemented as a quasi-static solver. Therefore 

in simulations the control forces may result in large initial deformations of t he non­

linear model since t here are no viscous or inertial forces acting as resistance. Some 

overshoot to appear in t he simulations t hat may not be as evident in t he experiments, 

where inert ial and viscous effects are present. 

All simulations were conducted using MATLAB 's Simulink® software to synthe­

size the control signals and apply them to t he nonlinear deformable object . The C++ 

object model is compiled into a Window's dynamic link library (DLL) to allow inter­

facing with MATLAB and Simulink. Addit ionally, the RKPM implementation uses 

a CUDA CPU to accelerate the DLL 's ability to solve t he RKPM model 'wit h forces 

input from the Simulink controller. 
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5.1.1 Defining the Linearized System 

The first step in t he controller design is to extract t he useful information from our 

deformable object model. Recall t hat the dynamic object model with output is given 

by 

lVJ (d)d + V (d, d)d + J«d)d = f 

y = LTd 

where the state-space form desired is 

with 

and state 

x = Ax + Bu 

Y= ex 

(5 .1 ) 

(5 .2) 

(5 .3) 

(5.4) 

Compute the mass , damping, and stiffness matrices from the model, linearized by 

evaluating them and the equilibrium point where d and f are zero. 

The influence matrix B matrix needs to be created from knowledge of how ex­

ternal particles will distribute over the object nodes. This will vary depending on 
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the modeling approach. As a simple illustration, consider t he mass-spring-damper 

model with four nodes as shown in Figure 5.1. For t his simple planar model we have 

node number N = 4 and space-dimension k = 2. Define t he displacement vector 

d E ]R8 such t hat the entries represent the x- and y-displacements of each node start-

ing with the top left and reading left to right. Two planar (two dimensional) forces 

act on the two rightmost nodes which correspond to elements 3, 4 and 7, 8 of our d 

vector. The external force vector would be f ~ [0 0 Fxl f~, 0 0 Fx2 F~2 r 
Decomposing t his simple into an influence matrix and input vector would give unity 

entries: 

o 0 000 

o 000 0 

o 

o 

100 0 

o 1 0 0 

o 0 0 0 

o 0 0 0 

~2x 0 0 1 0 

~2y 0 0 0 1 

(5 .5) 

Tote again, that more complex influence matrices can be used to apply more dis-

t ributed forces , depending on t he model. 

The selector matrix iT is defined in a similar fashion by selecting which nodal 

displacements represent t he posit ions of nodes which we wish to regulate. In our 

simple example, if we wish to use t he two forces to control t he posit ion of the lower 

left node, the posit ions would be entries 5, and 6 in d . The selector matrix would 
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p~ 

~F 
1 

Figure 5.1: Simple 4 node IVISD deformable object for illustration 

simply be 

iT = [0 0 0 0 1 0 0 0 ] 

o 0 0 0 0 1 0 O. . 

For Lhe linear sLaLe-svace mouel, simply substitute J\I[ , V , K , B, and iT into (5.3). 

Recall , for these models, that the D feed through matrix is zero. Additionally, as 

explained in Chapter 3, we may have access to more states than the ones to be regu-

lated. In this case we also have the measurable output vector Ym = Cmx . The matrix 

Cm E :[RPm xn is constructed in the same manner as C, using a corresponding selector 

matrix i~ to indicate all the nodal deformations for which we have measurement 

access. The feedthrough matrix in this case. Dm. is also zero. 

To remain consistent with the formulations of Chapter 3, we assume that the 

disturbances on the plant do not occur from any knovv exogenous signals and therefore 

E = O. Also, are reference signals, r(t ) are what we want the output Y to exactly 

match, therefore F = - I . Finally, the exogenous reference signals are assumed to be 

set-point signals with no dynamical model , giving Al = 0, as well. 
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These matrices fully defined our linearized state space system with regulated out-

puts, and measured outputs , and error signal: 

x = Ax+Bu 

Y= Cx 

e = Cx + FT. (5 .6) 

5.1.2 Reducing the Simulation Model 

For each deformable model , the control law was applied to both the original full 

state model, and the reduced state model. For cases when the model is reduced, 

the procedure as outlined in Chapter 4 is followed , summarized briefly below for our 

model. 

Using the same mass , spring, and damping matrices, we form the a slight ly varied 

version of the state space equations with the matrices 

with 

G R = [K 0] B R = [B] 
a 111 a 

L~= C 
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Vle use the subscript R to differentiate these matrices from any other similarly named 

matrices already defined. Following Algorithm 4. 1, we find the projection matrices 

X and Y. For our problem, we reduced around the expansion point 80 = 0 in the 

algori thm because we wish to moment match around the origin of H (8). That is, 

we desire to keep the low frequency moments of the MIM 0 transfer function. The 

reduced state space matrices are 

The reduced state space form is recovered by 

D= 0 

Dm=O 

For the different deformable obj ects tested, the reduced system is compared to the 

original system to illustrate that the low frequency properties were retained. 

5.1.3 Control Design 

Once the state space matrices have been obtained, we need to ensure the object 

model in combination with the manipulation points , control points, and any boundary 

condit ions are defined such that a robust regulating controller exists. This involves 

ensuring the conditions outlined in section 3.2. 1 are met. First , we ensure our matrix 

pair (A, B ) is stabilizable. 'Without this condition, the exponential stability of the 

closed-loop system cannot be guaranteed by simple state feedback. For the models and 
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configurations presented in the results of this thesis, the system is in fact controllable, 

allowing more flexibili ty in the design of the stabilizing matrix gains. Next, we need 

to be sure our system is detectable. For this we check the matrix pair (Cm , A) since 

we are relying on the feedback of our measured output Ym and not just the regulated 

output y. However , since we assume measurement feedback, but have a controller 

based on error , we need to make sure that the error is Teadab le from Yrn' That is, 

there exists a matrix T such that C = TCm . Our formulations guarantee this since 

the regulated outputs y are in fact a subset of the measured outputs Yrn ' Together 

with the detectabili ty of (Cm , A) , this essentially ensures the detect abili ty of (C, A). 

For our simulations, these conditions are checked using the well known PBR tests 

for stabilizability defined as 

rank [A -).J B] = n 

for all eigenvalues A of A , and for detectabili ty defined as 

[ 
Cm ] rank 

A - AI 
=n 

for all eigenvalues A of A, 'where n is the dimension of the state vector x . Finally, we 

ensure that a solut ion to the regulator equations exists with the condit ion 

rank [~ : ] = n+p. 

For the simulations presented in this thesis , all criteria to ensure a solution are 
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met. The next step is to augment the plant system with an internal model variable z . 

Defining t he internal model for the exogenous signals is simple in t he case of set-point 

t raj ectories. It can be achieved by defining 

(5 .7) 

with G1 = Opx p and G 2 = I pxp. This is effectively incorporating an integral control 

scheme for set-point reference signals. The augmented system is then given by 

with augmented state 

(5.8) 

The problem now remains twofold: determine the gain Kl nd K2 such that u = 

K 1x + K 2 z stabilizes t he augmented system, and design t he estimator system for x 

so t hat our actual cont roller law is u = K 1x + K 2 z . Vve approach t hese problems 

with t he 'Nell-known linear-quadratic gaussian (LQG) control philosophy. 

First , given t he augmented system, "ve find the optimal stabilizing gain matrix K 

from LQR design. That is , we wish to find the controller t hat stabilizes the system 

and minimizes t he cost function 

(5 .9) 
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under the state feedback form 

(5.10) 

Q can be interpreted as a penalty on the size of the states X, R a penalty on control 

signal size, and N penalizing a combination of the two. 

However, since we have a desired set-point output y it makes more sense to pe­

nalize the desired output from deviating from its desired value and t he control signal 

from deviating from its steady-state value. Recall from Section 3.2. 1 that these steady 

state values are given from the solution to 

(5. 11) 

and from the solution to our regulator equations, we have x * = Xr and u * = Ur. If 

the system has equal number of inputs and outputs (i.e. m = p), and condit ion 3.3 

is met , then we can solve 

(5. 12) 

T he matrix X corresponds to the upper-rightmost n x p submatrix, and U the lower­

rightmost m x p submatrix. Alternatively, we could solve for these matrices from 

block matrix inversion formulas which gives 

X = A - lESAl 

U = SAl 
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where SA = D - CA- 1 B is the Schur complement of A. 

If there are more inputs than outputs (m > p), then we do not have a unique 

solut ion. X and U are best solved from the Moore-Penrose pseudoinverse of the 

linear system. In MATLAB, t his is achieved using t he pinv function. Note t hat t his 

results in t he minimum 2-norm solut ion for x* and u* to the linear system. 

Mathematically, t he cost function we want to minimize is 

J = 100 

{ally - r l12 + f3 llzl12 + , llu - u*112 } dt. (5 .1 5) 

Modify ing t he cost function to instead minimize t he square of the 2-norm of t hese 

errors (which does not change the solution of the cost function), we can manipulate 

to attain a proper LQR cost funct ion as follows: 

J = 100 

{ally - r ll~ + f3 llzll~ + , llu - u*IID dt 

= 100 

{a(y - r f( y - r ) + f3 zT Z + , (u - U*)T(U - u *) } dt 

= 100 

{a(yT y - 2yT r + rT r) + f3 zT Z + , (u - u*f(u - u*)} dt 

= 100 

{a(xTCTCx - 2XTCTCX* + X*TCTCX*) + f3 zT Z + , (u - u*f(u - u *) } dt 

= 100 

{ (x - x*f aCTC(x - x*) + zT f3 I z + (u - u*f , I (u - u*)} dt 

100 { [ 1 [aCTC 0] [(X - x*) ] '" '" } = 0 (x-x*f zT 0 f31 z +(u - u f , I (u - u ) dt 

100 { [acT c o] } = 0 (x-x*f 0 f31 (x-x*)+(u - u*f, I (u - u *) dt 
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which corresponds to an LQR problem with t he weighting matrices 

R = ry1 N= O. 

The a, (3, and ry, parameters provide a convenient way to tweak the resulting gain 

matrix and alter t he transient response characteristics of the output while still main­

taining stability and robustness. Note t hat although they presented as scalars here, 

a , (3 and ry could be defined as weighting matrices to affect the difference components 

of y , z and u individually. 

Note also t hat the vectors in our cost function are x - x* and u - u *, as opposed 

to simply x and u. This means that our cont rol signal over which we minimize must 

be of the form 

or more properly 

u - u * = K (x - x *) 

u = K(x - x*) + u * 

u = K 1(x - x *) + K 2z + u * 

u = K 1(x - Xr) + K 2z + Ur 

u = K1x + K 2z + (U - K1X )r. 

(5 .16) 

(5 .17) 

Let the third gain matrix in (5. 17) be K 3 = U - K 1 X. Notice t hat this is exactly t he 

feedforward mapping of t he reference signal r described in Chapter 3. 

Upon substit ut ion into are state space formulation, we see t hat using x - x* and 

u - u * with t he optimal gain matrix K will still stabilize the augmented system just 
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as (5 .10) would: 

The closed loop state matrix , Ac is exactly t he same as it would be under control 

law (5. 10). Thus we can conclude t hat since, by definit ion , the LQR optimal gain K 

stabilizes the augmented system under (5 .10), the same K will stabilize the system 

under (5. 17). 

The next part of LQG controller design is creating the state estimation x. Given 

our state space system, we construct t he estimation from 

(5. 18) 

where the corrective gain matrix L is chosen such that A - LCm is stable. Often, a 

good approach to designing L is to approximate t he process and measurement white 

noise characteristics that affect our states and output , respectively, and minimize 

t heir effect on t he state-estimate. The optimal gain matrix L in the presence of t his 

noise results in the well-known Kalman-Bucy estimator. 

For our simulations and experiments we assume the process noise n u affects the 

system control input, with a variance of E(nunL). Similarly, t he measurement noise, 

n Ym is added to t he output Ym with a variance E(nYm n~J . The optimal estimator 

54 



lVI.A .Sc. T hesis - Richard Fanson McMaster - Electrical Engineering 

gain L is obtained using lVIATLAB 's kalman command. 

From this LQG approach , we have matrices I{ and L matrices t hat stabilize 

A + HI{ and A - LCm , respectively. The entire control can now be described as 

z = y - r 

(5. 19) 

The topography of t his control scheme depicted in Figure 5.2 . 

.... K3 , 

r(t) 
" U(t) ... x = f (x, u) Y11/t) ... ... z=G1z + G2 e ~ 

~ ~ U =KIX + K2 z 
, 

Ym= h(x, u) 
~ 

, 

Contro ll er Non li near Plant 

x(t) 

£ = (A - LC,)X Bu +LYm 
.-

'-- + 
~ .... 

State Estimator 

Figure 5.2: Block Diagram represent ing simulation control loop. 

5.1.4 The Feedforward gain, K3 

It is worth some discussion on the feedforward gain I{3' T his term is not necessary to 

ensure robust regulation for the special case of set-point regulation. This is essent ially 

because t he constant nature of the reference r means it can always be t reated as zero 
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under an appropriate change of coordinates. Since this term maps the reference signal 

to our invariant subspace, a linear mapping of zero will st ill be zero. However, our 

initial conditions, under t he new coordinates , imply t hat we are not on t he invariant 

subspace , i. e. u (O) i- Ur (O) and the integral term will force our control signal to the 

mapping such that of limhoo u (t) = Ur (t ). Since for set-point regulation we do, in 

fact , know the ini t ial conditions of u (O) and r (O), as well as the ent ire trajectory of 

r (t ), using the feedforward matrix J{3 will allow a faster convergence to t he steady 

state values of u and x with the integration term only account ing for uncertaint ies 

and disturbances of the system. 

Additionally, for t he case when the number of inputs equals the number of outputs , 

(m = p), t he use of J{3 will not affect the final values of u. Since t here is only one, 

unique solut ion , the input must converge to t he single solut ion to achieve regulation. 

However, in t he case where there are more inputs t han outputs t he results may 

vary depending on settings of the LQR parameters and the solution obtained from 

(5 .11 ). For example, if we find t he min-norm solut ion from the pseudoinverse , we find 

t he values of u * and x* with the minimum 2-norms which solve t he linear system . 

Since the actual system is not linear and t here is likely uncertainty present, t hese 

values will not be t he actual steady-state values , and the integral term will cause 

convergence to the final values by minimizing t he deviation of y and u from C x * and 

u * , respectively, as weighted by t he LQR cost function parameters. If the feedforward 

term K3 is omitted, t hen t he final input values achieved are t he ones t hat minimizing 

the the deviation of y and u from zero , according to t he LQR weight ing parameters. 
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5.2 Experimental Setup 

In addition to applying an t he control law on a nonlinear computer model in sim­

ulations, experimental test were done using robot manipulators and a physical de­

formable object . The object is constructed from soft liquid plastic solution. The 

solut ion is mixed with eit her plastic softeners or hardeners to achieve varying stiff­

ness characteristics. 

The control law to determine the forces applied to t he object is t he same as 

described in the simulation setup of Section 5.1. However , the overview of system 

changes slight ly in the sense t hat we are no longer applying a force control signal 

directly to t he manipulation points of the deformable object as in t he simulation and 

no longer calculating the measured output directly from an object model. Instead, 

the control signal is passed to the robot controller and t he robot manipulator applies 

the forces to t he object . For t he output signals, we monitor t he manipulation point 

displacement from the coordinates of t he robot end-effector. Additionally, the control 

point displacement is measured using a stereoscopic camera and an infrared LED 

marker placed at t he desired location on t he object. The general overview of t he 

system is shown in Figure 5.3 . The physical setup is seen in Figure 5.4 showing a 

robot manipulator , stereoscopic camera, and plan ar object phantom with a single 

control point and single manipulation point. 

Although we monitor t he posit ion of t he control point here direct ly using a stereo 

vision camera , t he method of determining t he output position can vary. lVIore gen­

erally, we need the error to be readable t hrough whatever measured output , Y m' is 

available. In a medical setting, t his may entail monitoring a target in t issue by some 

imaging modality like ul trasound guidance. The position of t he manipulation points 
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Force Feedback f, (t) 
Simulink Block Diagram 
----------------------~ 
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Figure 5.3: System topography representing the experimental setup. 

Figure 5.4: Physical experimental setup with robot , camera and planar phantom. 
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are another natural addition for plant output since most robotic manipulators have 

an accurate feedback of the joint angles and thus the end-effector location via forward 

kinematics. Since t he controller is based on the feedback of an estimation of t he states 

of the plant model, any additional output fed into the estimator can help improve 

the accuracy of t he model. 

The setup comprises two CRS Catalyst-5 five degree of freedom (DOF) robots 

from Thermo Scientific . They are controlled using MATLAB 's Simulink interfaced 

to t he robot controllers using QuaRC® by Quanser. The robots are also equipped 

with ATI's Gamma® sensors at the end-effectors to provide force and torque values in 

six dimensions. The stereoscopic camera used is the Bumblebee2® from Point Grey 

Research. The 3D posit ion of the control point is calculated from the stereo images 

using a C++ program and sent to Simulink real-time using UDP protocol. 

The use of this equipment in the experimental setup requires two important as­

pects to be integrated with the output regulation controller: 

• camera to robot registration for control point feedback 

• hybrid position/ force cont rol to apply t he forces in object plane 

5.2 .1 Camera Registration and Control Point Feedback 

Image registration is required because the 3D position of t he control point is cap­

tured in t he cameras frame of reference and needs to be converted to a point in 

the robot 's coordinate system. \~Te accomplish t his with a fairly simple three point 

registration algorithm. Three points, represented with infrared LED markers, are 

placed in a known location in t he robots workspace. These points are captured in 

the ini t ialization of the camera and thus known in the cam era coordinate system as 
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well. Using t hese t hree points we can construct the rotation matrix that converts 

the camera coordinate fram e the t he robot coordinate frame. Any displacement of 

t he control point recorded in t he camera coordinate system is converted with t his 

rotation to a displacement in t he robot coordinate system . For these experiments , 

t he obj ect is placed in t he robot workspace such t hat the x- and y-directions agree 

with the robots coordinate system, thus a fur ther registration between object and 

robot is not necessary. Further details of t he image registration algorithm are given 

in Appendix B. 

5.2.2 Robot Hybrid Position/Force Control 

T he hybrid posit ion/ force control is required so t hat we can command the robot with 

desired posit ion for the z-coordinate as well as pitch and roll angles, while issuing force 

commands in the x,y-plane. The general control scheme is illustrated in F igure 5.5. 

The idea is to break t he tasks of position and force control into two orthogonal 

subspaces , determine t he joint level torques required to perform each , and sum them 

to create t he total manipulator input . 

From this diagram , we see t hat t he joint angles of t he robot are given by an n x 1 

vector (}a where n is t he number of joints. The torques controlling t he joints of the 

robot are given in the n x 1 vector T. The joint angles of the robot can be solved , via 

forward kinematics , for the 6 x 1 vector X a which represents t he fu ll Cartesian posit ion 

and orientation of t he end-effector. Similarly, a sensor at the end-effector gives a 6 x 1 

vector measuring t he Cartesian force and torque acting on the end-effector , f a' 

The error describing the difference between desired and actual Cartesian posi­

tion/ orientation is X e = X d - X a ' The error describing t he error between the desired 

60 



M.A.Sc. Thesis - Richard Fanson MclVIaster - Electrical Engineering 

Figure 5.5: Block diagram illustrating t he control law used for hybrid position/ force 
cont rol of t he robot manipulator (Fisher and Muj taba, 1992) . 

and actual Cartesian force/torque is f e = f d - f a' 

In order to achieve hybrid control , we simply select the subspace in which we want 

to achieve a desired force/torque, and the orthogonal subspace remains in posit ion 

control. This is accomplished with t he projection matrices Sand S1. . For our exper-

imental setup , we use 5-DOF robots with the desired subspace for force control being 

t he robot 's x ,y-plane. Therefore, t he projection matrices we use ar e simple 5 x 6 

selector matrices given by 

0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 

S= 0 0 1 0 0 0 S 1. = 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 
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5.3 Position Control Law 

The selected Cartesian position/orientation error is given by 

(5.20) 

The relationship between small Cartesian errors and joint- level errors is given by 

(5.21) 

where the Jacobian matrix J represents a first order approximation of t he relationship 

between differential joint-level motions and Cartesian space motions. Therefore, our 

selected subspace errors are related to the joint-level errors by 

(5 .22) 

As shown in Fisher and Mujtaba (1992) , the matrix 5J is not invertible but rather 

we solve for one of t he infinite number of solut ions, Bes ' from 

(5 .23) 

Here, (5J) + is the pseudoinverse of (5J ) given by 

(5J) + = (5Jf [(5J)(5Jfr
1 

(5 .24) 

and is often called t he right pseudoinverse. This corresponds to finding the mini­

mum two-norm solut ion of Be that satisfies (5 .22) . It should be noted that there are 

62 



f\/I.A.Sc. Thesis - Richard Fanson McMaster - Electrical Engineering 

other solut ions for the joint level error t hat can be found from adding vectors in the 

orthogonal complement space to (5J)+ as given by t he general solution 

(5.25) 

However , there are condit ions t hat must be satisfied in order to remain kinematically 

stable, and the minimum norm solut ion is t he simplest t hat meets these constraints. 

For more details the reader is referred to Fisher and M uj taba (1992) . 

Once having solved for the joint level error f) es' we can apply a posit ion control 

law to determine t he robot joint torques, T p . In our experiments, we use a simple 

joint level PD control law. 

5.4 Force Control Law 

Similar to the posit ion control , t he Cartesian force/ torque subspace of interest is given 

by 

(5.26) 

T he relationship between Cartesian force/ torque measurements and joint level torques 

is given by 

Therefore, the joint level torques errors are given by 

( .1 )'1' = 5 J 
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'With the joint-level torque errors, we use a simple PI Control Law to calculate the 

joint cont rol torques T F from the error , T es ' 

The control torques determined from the position and force control laws can be 

summed , as depicted in Figure 5.5, and applied to the robot to achieve the final 

hybrid control scheme. 

The experimental Simulink implementat ion of this hybrid control law and integra­

tion with the output regulation controller and camera feedback system can be found 

in Appendix C. 
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Chapter 6 

Simulation and Experimental 

Results 

T his section highlights some of the simulation and experimental results that were 

obtained using the control design simulation and experimental setups described in 

Chapter 5. First, the control is applied to a homogeneous object using one manipula­

tion point , and one control point (Section 6.1). Next, a nonhomogeneous object is ma­

nipulated with one control point and two manipulation points (Section 6.2) . Finally, 

we implement t he controller scheme to a nonhomogeneous obj ect using two control 

points and two manipulation points (Section 6.3). Each object and configuration is 

tested first in simulation using t he a nonlinear RKP fvI model, t hen in experiments 

with an actual planar deformable object . Each simulation and experiment tests both 

t he full state linearization (if possible) and t he reduced version. 
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6.1 Homogeneous Object Set Point Regulation 

The first object model used is a planar , square, homogeneous object broken up into a 

9 x 9 grid of nodes as seen in Figure 6.1. The object is modeled using an RKPM mesh-

free model measuring 140 mm in both height and width. This model is constructed 

to resemble the deformable object used in the experiments. 

Figure 6.1: Planar deformable object discretized into a 9 x 9 grid. 

The right edge of these nodes is fixed as an essential boundary, restricting the 

right-most 9 nodes to be immobile. This leaves 72 free nodes with both x and y 

displacements considered in the deformation model. The manipulator applies a force 

at the center of the left edge. In t he experimental setup , t he force is applied using 

a rod inserted into the object. To reflect this , we assume that that the force will be 

distributed amongst the four manipulation point nodes shown in Figure 6.1. It is 

important to note that these are not four independent manipulation points. A single 

control point is used for the output located at the center node of the object . 
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6.1.1 Full State 

Reformulating the second order dynamics into a state space for a 72 node model 

results in 288 states. The state vector , input vector , output vector , and measured 

output vector are respectively 

11]) 10 
Yrn E.Ifu , 

with corresponding state matrix, input matrix output matrix and measured output 

matrix 

C E jR2 X288 , C E jR10 x 288 
In , 

with D and Dm set to zero. 

6.1.1.1 Simulations 

For this model, we first run a simulation using the full 288 states for feedback control. 

The measured output we given noise characteristics of 0.01 mm2 to simulated the noise 

observed in camera measurements. The control signal was also given additive noise of 

1 X 10- 5 N2 to replicate the filtered force measurements observed in the experimental 

setup. The gain matrices are calculated from LQR optimal control and broken up 

into J{l E jR2 X288, J{2 E jR2 X2 , and J{3 E jR2 x 2 as described in Section 5. 1.3. The LQR 

parameters used were a = 10, (3 = 1000, ,.., = 0.5 . 

T he set-point reference signal used for this simulation is -3 mm in the x-direction 

and 2 mm in the y-direction. The output posit ion, y (t) , of the control point location 

is calculated from the RKPM nonlinear model with the applied input force control 
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signa.l. The output signal is shown in Figure 6.2. The dark blue and green solid lines 

represents t he displacement of t he control point in t he x-direction and the y-direction , 

respectively. The lighter dashed blue and green lines represent the corresponding 

desired set-point reference signal. 

The control signal u (t ) applied to the model is shown in Figure 6.7. The blue rep­

resents t he force applied in the x-direction and the green the force in the y-direction. 

Note that t he input forces almost directly reach their steady-st ate value. This implies 

that , at this amount of deformation, t he linearization is a good approximate of the 

actual nonlinear model used in simulation. Thus, the component of t he force from 

the feedforward gain matrix nearly achieves regulation. Some correction from the 

internal model states of t he controller , J{2Z , can be seen compensating for the error 

shown immediately after the step input. 

For a visualization , the deformation of the object before and after the set-point 

reference step is shown in Figure 6.4. The original undeformed object nodes are shown 

as blue dots with t he final obj ect deformation as red circles. 

6.1.1.2 Experiments 

A homogeneous obj ect is made from a single composition of super soft liquid plastic. 

The same control law and gains are applied to t he experimental setup. This object 

is shown in the experimental setup in Figure 6.5. 

For t his experiment , the desired control point posit ion was set to - 3 mm in x, 

followed by 3 mm in y. The control point t rajectory captured by the camera, shown 

in Figure 6.6 , clearly shows that the force applied by the robot manipulator are able to 

achieve sub-millimeter posit ioning of the control point . Comparing t he input control 

68 



M.A.Sc. Thesis - Richard Fanson McMaster - Electrical Engineering 

X 10" Ou1pul Posrtion .1 p~ (Y,. Y2) 

3~--------~--------~--------~ 

1 · 

~ 0 

i 
~.1 . 
o 

·2 . 

·3 

.4
0
'--------------'---------------'-10-----------'15 

Time (s) 

Figure 6.2: Simulated control point position output for full state estimation of the 
homogeneous object. 
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Figure 6.3: Simulated manipulation point input force for full state estimation of the 
homogeneous object. 
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Figure 6.4: Simulated deformation of the homogeneous object after control point 
regulation with full state estimation. 

Figure 6.5: Experimental setup for the homogeneous planar object. 
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force in Figure 6.7, alongside the position output, we can see significant differences 

from the simulation. When t he x-direction reference is commanded, there is slight 

deviation in the y-posit ion, as well. This could be attributed to an imperfection in the 

camera to robot registration exact direction the robot applies the force on the object 

as well as to modeling errors representing the interactions between the input force 

in the x-direction and the output position in the y-direction. Another noteworthy 

observation is decrease in the force command even in areas where the position is 

relatively steady. This appears to be an example of relaxation in the object - a 

nonlinear property not taken into account in the RKPM model. However, the robust 

control law compensates for the discrepancy quite well. 

Position Output at P~ (Yl ' Y2) X 10,3 

5.---~----~--~----~----.---~ 

4 . : : 
: : ........... .-........... : .......• . -:- ~. -=:=:-:-"'--l 

2 .... . T i .......•..................................• , •....... r-... -... '-". -. __ -, 

:[. 1 · ........ : ................ : .... . .... . 1. . ...... -P~x meas 

~ : -p~meas 
~ 0 ....... ....... _.. --- Pbx ref 

'o~-l . 1 .. ... .. --- Pcy ref 

·2 

.3 L~. "-'.' ~~··V~~~. ..~ - . 
. . 

4 ·· ··· · ··· · · · ·· ······ · ···"··· · ············· ·· ·· ·· · _·· · 

.5
0
'-----:20-':-----4Q-":-----:L
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----..:-':80-----"100'------'120 

Time (s) 

Figure 6.6: Experimental control point position output for full state estimation of the 
homogeneous object. 

6.1.2 Model Reduction 

In this section we apply model reduction to our homogeneous linear model to re-

duce the number of states in the state-space model while still capturing the dynamic 
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Figure 6.7: Experimental manipulation point input force for full state estimation of 
the homogeneous object. 

behaviour of the object. Algorithm 4. 1 described in Chapter 4 is used. For these 

simulations and experiments we reduce t he model from 288 states down to just 12. 

The reduced model is compared to the old model in Figure 6.8 which shows the bode 

plots of the full state and reduced state MIMO systems. Using only 12 states the re-

duced system mimics the original almost ident ically from DC- I0 Hz and only deviates 

slightly afterwaJ:ds. 

6.1.2.1 Simulations 

The same simulation setup and parameters as the full state model are used. Also, 

we apply the control force onto the exact same nonlinear model. Applying a refer-

ence of -5 mm in x and -3 mm in y this t ime, we see the output position converge 

toward the target in Figure 6.9. The reduced model behaves quite similarly to the 

full-state counterpart , as results are quite similar. The larger step seems to have 

caused the linearization to deviate more drastically from the actual, indicated by the 
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Bode Diagram 

From: In(1) From In(2) 

- FuliState 
- Reduced State 

10
2 

Frequency (rad/sec) 

Figure 6.8: Bode plots comparing the full state (blue) model to the reduced state 
(green) homogeneous object model. 
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error in the y-posit ion immediately after the reference. Changes to a , (3, and I can 

be made when determining the gain matrices from the LQR design to achieve faster 

convergence at the expense of larger control signals, potential overshoot , etc. As is 

evident in Figure 6.10, the force in the y-direction grows slowly after the initial feed-

forward component. The parameters can be altered to achieve the desired transient 

response at the simulation stage, before applying to the practical experiment. The 

final deformation is overlaid with the original object again in Figure 6.11. 

Ou1put Posi1 ion at P~ (Y1' Y2) 

-p~x meas 

Ita ·· ············· · ···· · ····· ; ··· ·· ··· ····· · · ····.···· · · ..... : .. I - p:"'meas 

., 

·4 

- - - P~x ref 

I ························ ;··············· .......... ·· ...... ; .. · .. · 1 - - -P:'" ,ef 

Time (sj 

Figure 6.9: Simulated control point position output for reduced state estimation of 
the homogeneous object. 

6.1.2.2 Experiments 

The controller parameters determined from the reduced model simulation are used in 

the experimental setup on the homogeneous phantom. The control point trajectory is 

shown to converge to wit hin sub-millimeter error of the reference again in Figure 6.12. 

The force applied is shown in Figure 6.13. The experimental results when using the 

reduced model are quite similar to the those of full-state controller. The reduced 
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Figure 6.10: Simulated manipulation point input force for reduced state estimation 
of the homogeneous object. 
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Figure 6.11: Simulated deformation of the homogeneous object after control point 
regulation with reduced state estimation. 
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st ate linear model clearly shows the capability of regulating set-point trajectories for 

our homogenous object . 

Outpul Posnion al p~ (Y,. y,) 

S If ······· :··········;······ ····;·· ········;········ ..,··· ............ -p~xmeas 

~ 0 _______ ~~ ... ....... , ........ -p~meas 

~ '-"'~ ; ". P~x ref 
6 ·1 --- p~ref 

: : : 
·4 .................. : ..... .... . 

. 50~----::'::20--:4':--O --='=60--::80~-l~OO:---,-:l20!=--:l:C::40-~l60=---:-:',80 
Time (s) 

Figure 6.12: Experimental control point position output for reduced state estimation 
of the homogeneous object. 

6.2 Nonhomogeneous Object Set Point Regulation 

In this section we use the same control formulation but apply it to a more complex 

model with inhomogeneities and two manipulation points. The object this time is 

a circular object , approximately 140 mm in diameter , discretized into 205 nodes as 

shown in Figure 6.14. The bottommost 3 nodes are defined as an essential boundary 

in the model and thus fixed and not included in the states of the linearized model. 

The object is composed of material with two different consistencies. The majority 

of the object is relatively soft , with a stiffer rectangular region in center , defined by 

the dashed box. The nonlinear RKPM model for this object was defined with all 

positions in mm, and all forces in J 
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Figure 6.13: Experimental manipulation point input force for reduced state estimation 
of the homogeneous object. 
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Figure 6.14: Nonhomogeneous planar deformable object discretized into a 205 nodes. 
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6.2.1 Full State 

For 202 free nodes , the linear state space model will result in 808 states . vVith our 

configuration, we have two manipulation points, with forces distributed over 3 nodes 

each, and one control point which gives state-space vector and matrix dimensions 

11)) 14 
Ym E IDl. , 

A E jR808X808 , B E jR808X4, 

6.2.1.1 Simulations 

For the full state simulation, \ve design the controller with all LQR cost function 

parameters, 0:, j3, ,,/, set to unity. The reference signal given is 1 mm in x and 3 mm in 

y. The simulation output from the nonlinear model is shown in Figure 6.15. The x-

coordinate of the control point is shown in blue, the y-coordinate in green. The large 

spike in the x-coordinate immediately after the step is a result of t he nonlinear model 

focusing on quasistatic representation of the object. The linearized model contained 

significant damping and inertial dynamic components not represented in the RKP lVI 

model. The results is a larger control force to overcome these dynamics that causes a 

larger than expected deformation in the nonlinear model. However , even with such a 

large discrepency between the linear and nonlinear model , the controller compensates 

effectively to reach the desired trajectory. 

The control signal for manipulation point P~1 is shown in Figure 6.16 a) and for 

manipulation point p?n in Figure 6.16 b). The init ial and final deformation of the 

nonhomogeneous object is shown in Figure 6.17 along with the measured control and 

manipulation point trajectories, Y m . 
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Figure 6.15: Simulated control point posit ion output for full state estimation of the 
nonhomogeneous object. 
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Figure 6.16: Simulated manipulation point input force for full state estimation of the 
nonhomogeneous object. 
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Figure 6.17: Simulated deformation of the nonhomogeneous object after control point 
regulation with full state estimation. 
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6.2.1.2 Experiments 

The controller could not be implemented on the experimental setup for t he full state 

model. The amount of memory required to estimate the full state model proved too 

much for the Simulink real- t ime workshop. This reinforces the mot ivation for accurate 

cont rol laws formulated from reduced models. 

6.2.2 Model Reduction 

For t he nonhomogeneous object , we apply model reduction as before, resulting in a 

linear state space system wit h 40 states. The bode plot comparing the reduced model 

to t he full state nonhomogeneous model is shown in Figure 6.18. 

6.2.2.1 Simulations 

The same unity parameters were used for the Ct and (3 LQR parameters however 

I = 1000. This is to ensure that the cont rol signal cannot not grow too much larger 

than the approximated steady state values (u*) and therefore limit ing the overshoot 

t hat will show up in t he quasi-static nonlinear RKPM model. 

Again using reference 1 mm in x and 3 mm in y, the results remain quite similar 

to t he full state simulation. The output posit ion is shown in Figure 6.19 with ma­

nipulation point forces for P~1 and P;n shown in Figure 6. 20(a) and Figure 6. 20(b) , 

respectively. 

6 .2.2.2 Experiments 

The nonhomogeneous object was posit ioned in the experimental setup as shown in 

Figure 6.22. Again , t he same reduced-state regulating controller was implemented 
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Bode Diagram 
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Figure 6.18: Bode plots comparing the full state (blue) to the reduced state (green) 
nonhomogeneous object models. 
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Figure 6.19: Simulated control point position output for reduced state estimation of 
the nonhomogeneous object. 
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Figure 6.20: Simulated manipulation point input force for reduced state estimation 
of the nonhomogeneous object. 
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Figure 6.21 : Simulated deformation of the nonhomogeneous object after control point 
regulation with reduced state estimation. 
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as in simulations and set-point reference steps applied. The recorded control point 

position is shown in Figure 6.23 with the corresponding forces for manipulation points 

1 and 2 shown in Figure 6.24(a) and Figure 6.24(b) , respectively. The reference 

signal in this experiment consists of several steps: first 1 mm in y, then 1 mm in x, 

then up to 2 mm before both returning to O. The recorded control point position is 

noticeably noisier in this experiment then previously because of the position of the 

camera. Since two robotic manipulators were used an overhead view of the object was 

more obstructed. The camera had to be moved farther away and at the side which 

caused the y-direction in the object-space to be primarily corresponding to depth 

in the camera which has the poorest resolution. The resulting affect is a step-like 

chattering of the recorded control point position. However, it is evident from the 

experimental results that the nonhomogeneous object , with two manipulation points 

and one control point is still successfully regulated with set-point inputs. 

Figure 6.22: Experimental setup with nonhomogeneous object phantom. 
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Figure 6.23: Experimental control point position output for reduced state estimation 
of the nonhomogeneous object. 
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Figure 6.24: Experimental manipulation point input forces for reduced state estima­
tion of the nonhomogeneous object. 
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6.3 Two Control Point Nonhomogeneous Object 

Set-point Regulation 

In this section, we use the same nonhomogeneous object as before, but require reg-

ulation of an addit ional control point posit ion. The object configuration with two 

control point locations and two manipulation points is shown in Figure 6.25. The 

actual object fi tted with LEDs is shown in Figure 6.26. 

p~ 

r - -
• • • • 1· · I • I cP c p~ • I • · I • 

I • • I • 

Figure 6.25: Nonhomogeneous, planar deformable object with two cont rol points. 
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Figure 6.26: Actual nonhomogeneous deformable object with two control points. 

6.3.1 Full State 

The linearized system remains the same as the previous model using one control 

point. The only change occurs in the output matrices, C and em, which are now of 

dimensions 4 x 808 and 16 x 808, respectively. 

6.3.1.1 Simulations 

For these simulations the object is subjected to a larger deformation inthe x-direction 

while remaining fixed in y. The set-point reference is 8 mm and a mm in x and y for 

control point p~ and 10 mm and a mm for control point p ;. We tune the controller 

using LQR parameters to ex = 0.01 , f3 = 0.01 , ry = 100 to give a slightly slower 

integral action and still keep t he control from growing too large from the steady-state 

value. The resulting simulation control point positions and input forces are shown 

in Figure 6.27, and Figure 6.28, respectively. The object deformation is shown in 
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Figure 6.29. 
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Figure 6. 27: Simulated outputs for full state estimation of the nonhomogeneous object 
with two control points. 

Again, we see significant overshoot stemming from the lack of proper inert ial 

and viscous characteristics in our nonlinear model implementation. However the 

system remains stabilized and converges to the desired set-point postitions even under 

extreme deformation with mult iple cont rol and manipulation points. 

6.3.1.2 Experiments 

As before, the st ate dimension for the full model is too large to perform an experi-

mental study with the robot ic manipulators. The feasibility of the regulation cont rol 

in experiments is demonstrated using the reduced model in the next sections. 

6.3.2 Reduced State 

As in the single control point case, the reduced-state model is represented again by 

40 states. The comparison of full- state linear model to reduced-state system is shown 
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Figure 6.28: Simulated manipulation point input forces for full state estimation of 
the nonhomogeneous object with two cont rol points. 
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Figure 6. 29: Simulated deformation of the nonhomogeneous object after control point 
regulation with full state estimation. 
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the bode plots of t he MIlVIO system in Figure 6.30 with 4-inputs and 4-output signals. 

6 .3.2. 1 Simulations 

The simulation results for t he reduced model are almost identical to the force inputs 

and posit ion outputs to the full-state linear model. This implies t he 40 state rep­

resentation for this model is just as suitable as the 808-state model for regulating 

two control points. The control point positions in Figure 6.31, and input forces in 

Figure 6.32, as well as object deformation in Figure 6.33 are nearly identical to their 

full- state counterparts. 

6 .3.2.2 Experiments 

The reduced state control gains of the simulation were implemented on the robotic 

experimental setup. For t hese experiments t he same, large-deformation reference 

signals are applied of (x , y) = (8, 0) for control point p~ and (x, y) = (10, 0) for p~. 

The output position results are shown in Figure 6.34 and control signals in F igure 6.35. 

The results are promising. Immediately after the step , t he feedfonvard contribution 

brings t he output towards the desired targets. Due to nonlinearities and modeling 

inaccuracies, t he init ial feedforward compensation deviates significantly from the set­

point values . However, the internal model of the regulating controller simultaneously 

brings both the control points to the desired values. 
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Figure 6.30: Bode plots comparing the full state (blue) to the reduced state (green) 
nonhomogeneous object models with two control points. 
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Figure 6. 31: Simulated outputs for reduced state estimation of the nonhomogeneous 
object with two cont rol points. 
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F igure 6.32: Simulated manipulation point input forces for reduced state est imation 
of the nonhomogeneous object with two cont rol points. 
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Figure 6.33: Simulated deformation of the 2 control point nonhomogeneous object 
with reduced state estimation. 
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Figure 6.34: Experimental outputs for reduced state estimation of the nonhomoge­
neous object with two control points. 
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Figure 6. 35: Experimental manipulation point input forces for reduced state estima­
t ion of the nonhomogeneous object with two cont rol points . 

6.4 Summary 

These simulation and experimental results represent various configurations of objects 

t ogether with various controller performance parameters. The objects and configura-

t ions tested include: 

• homogeneous planar objects 

• nonhomogeneous planar objects 

• one-control point , one-manipulation point configuration 

• one-control point , two-manipulation point configuration 

• two-cont rol point, two-manipulation point configuration 

The results show the potent ial for stable and robust convergence with all configura-

t ions under both small and large deformations while showing significant freedom for 

a designer to set controller performance. 
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Chapter 7 

Conclusions and Discussion 

This thesis proposes a new approach to designing the control law that solves the indi­

rect simultaneous posit ioning problem. This approach is based upon the linearization 

of an accurate object model representing the second-order dynamics of t he physical 

object. From the linearization, a state-space model of t he object is obtained which is 

t hen controlled using robust output regulation t heory. This controller forces conver­

gence of the output variables to their desired references in the presence of uncertainty 

and deviation of t he plant model parameters from their nominal values. Due to the 

inherent state-feedback form of t his controller , and the often large number of nodes 

involved in discretization of accurate object models, t he state vector can become sig­

nificantly large and unrealistic to implement in real-t ime experimental procedures. 

Therefore, model reduction techniques are investigated in this thesis to retain accu­

rate representations of the obj ect dynamics while reducing the size of the state vector 

needed for feedback. The control framework is verified in both simulations usmg 

MATLAB 's Simulink®, and experiments using robot manipulators. 
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7.1 Discussion 

Some previous reported results use cont rol schemes t hat rely on a linearization be­

tween the differential motions of the manipulation and control points, namely the 

J acobian. A benefit of this formulation is t hat it allows the input variable to be 

t he posit ion of t he manipulation points . This may eliminate the need for additional 

sensors such as t he force/ torque sensors in t he experimental setup of t his t hesis, and 

reduce overall costs. However, t hese controllers neglect information about t he inertial 

and viscous effects of t he object 's motion. T he benefits of using a dynamic model for 

t he basis of the control law include more flexibili ty in designing for desired t ransient 

responses. 

A controller t hat is based on second order dynamics allows the freedom of chang­

ing controller parameters to obtain desired transient response characteristics without 

compromising the stability of t he system. Additionally, using state-feedback for the 

stabilizing portion of the control allmvs for a more systematic approach dealing with 

objects t hat may have complicated composit ions and behaviour. Designs fo cused on 

simply PID control gains on error signals may not be able to stabilize objects with 

certain configurations and boundary conditions. 

An important note to t he reader is t hat the control scheme presented in this t hesis 

is robust in a classical output regulation defini t ion, such as defined in the work of 

Francis (1977) and Huang (2004). T he controller is robust by construction to uncer­

tainty and nominal plant value deviation within some neighbourhood of parameter 

variation. The control remains stabilizing and regulating so long as t he controller 

gains defined for the nominal plant still stabilize the closed loop system, and that t he 

rank condition (3.33) remains valid , given the plant variation. Controllers exist t hat 
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use a priori knowledge of t he ent ire range of plant parameter variations to guarantee 

robustness within t hat range, but require a different approach, such as Hco control , 

and are beyond the scope of this t hesis. 

The experimental procedures presented 111 t his t hesis demonstrate t he feasibil­

ity of t his control architecture in practice. Depending on t he setup , t here may be 

other circumstances to consider. For instance, t he posit ion feedback of t he control 

point used in t his t hesis was based on a stereoscopic camera and infrared fil ters and 

LEDs. Using other imaging modalities , such as ultrasound or NIRI , may require more 

complicated procedures to properly complete the coordinate registration and image 

segmentation to determine the posit ion of any measured out put points . Also, since 

t he control scheme is based on t he dynamic characteristics of the object , t here is 

an inherent lower bound on t he sampling rate of which t he output deformation is 

fed-back in order to facilitate t he controller in real-time. 

7.2 Further Development 

Furt her research could include extending this control approach beyond planar obj ects 

to the 3D case. Addit ionally, t he branch of work could be expanded to include even 

more complicated obj ects with holes and more inhomogeneit ies, as well as obj ects 

without a fixed essent ial boundary. In the fut ure, there 'would also be a more t horough 

analysis of the amount of deformation and uncertainty allowed in t he model vvhile 

still ensuring stability and robustness to set-point reference t rajectories. 

Additionally, we could explore different t asks such as needle insert ion. This prob­

lem would be quite similar in formulation bu t involve the convergence of the control 

point to a line, namely the needle path , rather t han to a fixed point . This would 
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likely also involve incorporating a more complicated object model t hat accounts the 

change in object characteristics due to the needle's insert ion. 

The area of model reduction provided a means for reducing t he state vector re­

quired in t he controller synthesis while still capturing the characteristics ofthe object. 

However, t here is room for a more thorough investigation into t he optimal order of 

the reduced model for a given object. A more systematic choice the the number of 

matched moments in t he reduced model would be beneficial in the controller design 

process. Also, there would be value in an comparing a controller that first reduces 

the model for t he basis of a "full-state" controller , as presented in t his thesis, and one 

that determines optimal projection equations for reduced order compensation. The 

key difference being when during controller design a reduction procedure occurs. 

Another area of focus could involve coupling the now separate control aspects of 

t he object controller and the robot hybrid cont roller. This would involve including 

the robot dynamics into the interaction with the object and treating t he inputs to 

t he system as t he manipulator joint torques, rather than the forces on the object 

manipulation points. 

Finally, t he results show successful manipulation and and object with more inputs 

than outputs, which implies t here is no unique solution to t he required input forces 

t hat achieve the desired output posit ions. However, t here was no exploration into 

t he benefits of the addi t ional degrees of freedom in t he system and how to design t he 

system to converge to one solut ion over another. Future work could involve similar 

experimental setups t hat use this extra degree of freedom to incorporate more complex 

path planning or to impose some constraints on t he manipulation points. 
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Appendix A 

Model Parameters Optimization 

The properties of t he hyper-elastic plastic materials were determined by experimen-

tally deforming the object with a robot manipulator . Both the deformation of t he 

obj ect was recorded as well as t he interacting forces applied by the manipulator . 

Figure A.I shows a sample of material being deformed with certain point locations 

being recorded by a stereo vision camera. Simulations were then performed while 

tuning object parameters until t he simulated deformation matched t he experimental 

deformation. For t hese objects , t he second Piola-Kirchhoff stress is defined as 

S(E) = A tr(E) I + 2p,E (A.1) 

where E is the Lagrangian Green strain and A and p, are the first and second Lame 

parameters. This is derived from the partial derivative of the strain-energy density 

function 

A 2 2 vV(E) = 2 [tr(E)] + ~i tr(E ). (A.2) 

The parameter ident ification comprised two steps. In the first step , a grid search 
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Figure A.I: Deformed object sample with markers to t rack deformation. 

was used to ident ify a set of parameters that matches approximately t he object . Then, 

an opt imization rout ine was started from that point . 

The cost function that is used for identifying A and 11 is defined based on the 

difference between the recorded posit ion of the cont rol points and the posit ions of 

them in simulation. This cost function should be minimized such that the best values 

for A and 11 that match the deformation of the simulated object and the deformation 

recorded from the experiment are found. Therefore this cost function is defined as 

n 

f (A, I1 ) = L Ilpi - qill~ (A.3) 
i= l 

where p/s are the posit ions of the cont rol points on the object , q/s are the posit ions 

of the cont rol points in simulation, and n is the number of control points. The surface 

plot of the values of this cost function as a function of A and 11 is shown in Figure A.2. 

Using the above ment ioned algorithm for ident ifying the object 's parameters leads 
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Figure A.2: Surface plot of the error cost as a function of the parametres M and A. 

to values of 0.189151 and 0.147688 for M and A, respectively. Figure A.3 shows the 

simulation of the deformation with both the simulated control points positions and 

the recorded control points positions for the object with these parameters. Error 

histogram for the simulation is also shown in Figure A.4. The mean error of the 

simulation was 0.80 mm with standard deviation of 0.46 mm. 

For the nonhomogeneous objects, anot her solut ion using a plastic softening addi-

t ive was used to create another sample with distinct material characteristics. The sec-

ond, softer material deformation was recorded experimentally and parameter-matched 

using the same process. The cost function for the Lame parameters of this material 

is shown in Figure A.5. The optimal parameters are found to be f-L = 0.039 and 

A = 0.043. The simulated marker point deformation is compared to the experimental 

recordings in Figure A.6 with the error histogram shown in Figure A. 7. 
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Figure A.3: Object deformation showing both the simulated control point positions 
and the recorded control point positions. 
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Figure A.4: Error histogram of the simulated vs recorded marker point deformation. 
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Figure A.5: Surface plot of the softer material error cost function. 
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Figure A.6: Object deformation showing both the simulated vs recorded control point 
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104 



M.A.Sc. Thesis - Richard Fanson McMaster - Electrical Engineering 

Error Histogram for Optimal Parameters 
Ii = 0.039; A = 0.043 

3.--- .--

2.5 

2 

1.5 

0.5 

OL--_---....JL-

-0.5 0 0.5 1.5 
Error (mm) 

2 2.5 

Figure A.7: Error histogram of the softer material marker point deformation. 

105 



Appendix B 

Image Acquisition and 

Camera-Robot Registration 

For all experimental tests, t he posit ion of the control point is tracked using the 

Bumblebee®2 Stereo Vision CCD camera from Point Grey Research. The camera 

captures two images at a resolut ion of 800 x 600 and transferred to a computer via 

IEEE-1394 (Firewire). We add to the camera two infrared filter lenses from Newport 

Corporation with a cutoff frequency of 780 nm (part no. FSR-RG780) , as seen in Fig­

ure B.1. Using the filters and infrared LEDs as t he markers allows easier segmentation 

of the points of interest in t he cameras fie ld of view. 

Custom software was developed using the Triclops SDK from Point Grey Research 

to process the images acquired by t he camera and determine t he 3D coordinates of 

t he control point on the object . The general outline of the software algorithm to 

capture the control point deformation is given in Algorithm B.1. 

The camera is initialized so t hat , given t he ambient setting of t he experiment, 

only the infrared LEDs, are visible in t he camera image. For our experiments, this is 
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Algorithm E.1 Image Acquisition and Registration 

init ialize camera 
while camera output required do 

read left and right camera images 
binarize both images: 
for (each pixel in image) do 

if pixel > thTeshold then 
pixel = 1 

e lse 
pixel = 0 

end if 
end for 
segment both images into marker blobs 
convert matching blobs into 3D points 
sort 3D points into registration and control points 
if first image acquired then 

compute registration from 3 reg. points 
end if 
convert 3D points from camera coords to robot coords 
for first 20 images do 

average the control points, 
set as init ial posit ion 

end for 
compute cont rol point displacement from initial positon 
send displacement over UDP to simulink 

end while 
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Figure B.l: Bumblebee®2 Stereo Vision camera with infrared fil ters. 

done by manually adjusting the camera settings such as aperature t ime, exposure and 

gain. This reduces any chance of false positives during segmentation and recognizing 

an artifact as an LED marker . 

The left and right camera images are acquired and stored as 800 x 600 arrays 

of 8-bit greyscale values. Both images then binarized so that only pixels above a 

certain value are retain and everything else filtered out . For our experiments, we use 

a threshold value of 225. Any pixel above this value is taken to be a part of our 

marker and set to true . 

Next the images are segmented using a blob finding algorithm that creates a linked 

list of pixel groupings. There will be one blob for every registration LED and one 

for every control point in each image. These blob lists are then sorted so that the 

the blobs for the right image can be matched to the corresponding blobs of the left 

lmage. 
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Left Image Right Image 

b 

Figure B.2: Stereo vision geometry showing how a single point represented in the 
separate camera images. 

Once two lists of blobs are computer in matching order, we use the centroids of a 

matching pair to compute a single 3D coordinate. Vve do this using the SDK function 

that returns an x,y, z-coordinate from the disparity (difference in column value) of the 

location in each image that should represent the same physical point , as illustrated 

in Figure B.2. Note , that because the camera lenses are aligned vertically, the row 

direction values should be the same in both images. The disparity can be converted to 

a 3-dimensional x,y,z-coordinate using "vhat is called epipolar geometry. The tricplops 

SDK includes a function uses the cam era baseline, b and fo cal-length, f to return a 

3D point when given a disparity. This conversion is made for every pair of matching 

blobs in the images. In our experiments, we will get t hree distinct 3D points for the 

registration markers, and one point for every control point being tracked. 

Once all points are given in 3D coordinates in camera the camera frame, the three 

point recognized as the registration LEDs are used in a to determine the rotation 

between the robot frame and the camera frame. This registration only needs to be 

performed once, and is completed upon receiving the first pair of images. Refer to 
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Figure B.3: Illustration different iating the robot frame, the camera frame, and the 
marker frame. 

Figure B.3 for an illustration of the different coordinate frames required for registra-

t ion. Note , that since all our experiments focus on displacements, we only need to 

solve for the rotation that relates the orientation of the camera coordinate system to 

the robot coordinate system. Otherwise, we would have to acknowledge a translation 

between t he coordinate frames, as well. 

First, from the three points captured in the camera frame, we can create an 

intermediate orthogonal coordinate frame labeled the m arker fram e. Let the three 

registration points captured in the camera frame be pf , pf and pf . Create a vector 

that will represent the marker space x-axis as seen by the camera; in this case x C = 
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pf - pf'· Create a second vector that we assume is in the x,y-plane of t he marker 

space: v C' = pf - pf'. Note t hat we cannot assume this to be exactly the y-axis 

because it may not be orthogonal to the x-axis we chose, as shown in the figure. vVe 

can however , create a third vector , orthogonal to t his plane to use for t he z-axis: 

z C' = x C' x v C'. Now, find t he orthogonal y-axis as y C' = z C' X x C'. The three axis of 

our intermediate marker space are now given in camera fr ame coordinates as 

The rotation that relates any point in the marker space to the camera space is given 

by 

In a very similar manner , we construct a rotation that relates t he orientation of 

the robot coordinate fr ame to the marker coordinate frame. The registrat ion LED 

points, need to be known in t he robot coordinate system. This is commonly done 

by touching t he robot end-effector to t he t hree points of interest and recording their 

locations. In our case, we use the a grid in the workspace to place the LEDs a known 

distance apart. That is, p~ is placed in the workspace and considered to be the origin, 

pf is placed an inch in t he robot's negative x-direction , and pf an inch in t he negative 

y-direction. The only difference between this and touching t he points is excluding 

the translation t hat relates the robot end-effector fram e origin to p~ . However , as 

ment ioned above, we are working with displacements from original posit ions and thus 

t he t ranslational aspect is not needed . 

vVe create an orthogonal frame of t he registration markers exactly as before, this 
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t ime as seen in t he robot coordinate frame perspective: XR, yR , zR. The rotation 

relating t he marker frame to t he robot frame is given by 

Now we can solve for t he relation between the robot and camera fr ames from 

R R R C R RT 
C - MM' 

The remaining 3D point displacements represent ing t he control points are sent 

via UDP to our Simulink robot controller. Before sending any data or moving the 

manipulators, t he control point location in t he camera coordinate system is averaged 

over t he first 20 images. This location is used as t he original, undeformed location 

for t he it h control point, p~c(O ). After establishing t his init ial posit ion, the following 

captured control point locations in t he camera frame, p C, are converted to displace-

ments simply from the difference between the current location and the init ial posit ion, 

p~ C (t ) = p C - p~ C (0). This displacement is still in t he camera coordinate system and 

therefore is converted to t he robot coordinate system with p~( t ) = R~ p~c (t ). This 

displacement is sent over UDP to t he Simulink simulation as the control point dis-

placement. Since all experiments occur in t he robot 's x,y-plane, t he z-displacement 

never changes , and the x and y coordinates of each control point are extracted and 

used as t he plant output y for our out put regulation controller. 
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Appendix C 

Experimental Simulink 

Implementation 

The cam era-based posit ion feedback, hybrid posit ion/ force control , and output reg­

ulation control schemes are all integrated using MATLAB's Simulink® and uses 

QUARC® by Quansar to control t he manipulators with the MATLAB Real Time 

\i\Torkshop®. The entire Simulink system is shown in Figure C.l. The main sub­

systems of this setup include the camera output feedback subsystem (shown in light 

blue) , the robot hybrid control subsystem (shown in orange), and the output regula­

t ion controller (shown in teal). 

The robot hybrid control subsystem is sho"vn in Figure C.2. The contents of this 

subsystem are described in Section 5.2.2. The Ca.rtesian posit ion error is projected 

into the subspace that includes the z, pitch and roll components using a selector 

matrix and converted to a joint level error. A simple PD controller converts t his error 

to the first half of t he control signal for the robot joints . Simultaneously, t he force 

feedba.ck from the end-effector is projected onto the x,y-plane subspace, converted 
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to a joint level torque error and a simple PI controller converts t his to the second 

half of t he control signal for t he manipulators. The posit ional commands keep the 

manipulator in t he x,y-plane of the deformable object . The force commands are 

determined from the output regulation controller subsystem. 

The camera feedback subsystem is shown in Figure C.3. The actual control 

point posit ion is calculated from the an algorithm running simultaneously and im­

plemented in C++ It uses a stereo vision camera and the image registration de­

scribed in Appendix B. This control point posit ion calculated in t his algorit hm is 

received in Simulink® via the stream server block and UDP communication. The x,y­

coordinate(s) of t he control point(s) are passed to the out put regulation cont roller 

subsystem as t he output vector y . 

The output regulation subsystem is shown in Figure C.4. The feedback from the 

camera and the x,y-displacement of t he robot end-effector are both calibrated to be 

zero when the object is in the undeformed state. The deformation of cont rol points 

and manipulation points from the original position are concat enated and passed to 

t he output regulat ion controller as t he out put measurement Yrn. The controller and 

estimator determine t he appropriate control force t he robots need to apply to the 

manipulation point to bring t he control points to t here desired location, as described 

in 5.1. 
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Figure C. l : Simulink block diagram used for experiments. 
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Figure C.2: Robot Hybrid Control Subsystem. 
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