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Abstract

Traditionally, robots are used to handle rigid objects, such as in automotive and man-
ufacturing industries. Emerging robotic fields like food industry and medical robotics
has inspired research into robots capable of accurately manipulating deformable ob-
jects.

This thesis focuses on a task known as the indirect simultaneous positioning prob-
lem. The task requires accurate deformation control of a nonrigid object. The desired
configuration is prescribed by control points defined within the object body. This de-
formation is achieved by applying forces to to manipulation points located elsewhere
on the body.

This thesis approaches the problem using a linear robust output regulation frame-

work. This framework requires the following steps:

1. construct a second-order dynamical model of the object

O

linearize about the equilibrium point
3. assess the controllability, observability, and solution to the regulator equations
4. compute the controller gains that solve the regulation problem

This control law approach is tested in both simulations using a nonlinear RKPM

v



model of a deformable object, and in experiments using a robot manipulator to ap-
ply the desired forces to the manipulation points of a physical, elastic, deformable
object. This thesis proves the validity of this approach using homogeneous and non-
homogeneous planar objects, as well as multiple control point and manipulation point

configurations.
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Notation and abbreviations

Abbreviations:

FEM — Finite Element Methods

RKPM — Reproducing Kernel Particle Methods
SPH — Smooth Particle Hydrodynamics
PIC — Particle in Cell

DEM — Diffuse Element Methods

EFG — Element Free Galerkin

PBH — Popov, Belevitch and Hautus
MIMO — Multiple Input, Multiple Output
DOF — Degree of Freedom

DLL — Dynamic Link Library

GPU —— Graphics Processing Unit

SDK — Software Development Kit

PI — Proportional, Integral

PD — Proportional, Derivative

PID — Proportional, Integral, Derivative
MSD — Mass-Spring-Damper

SVD — Singular Value Decomposition



Deformable Object Model:

k — Euclidean-space dimension

N — number of nodes

d(-) € R¥N — deformation vector
M(-) € R¥VXEN — mags matrix

V(:) € R¥VXEN — damping matrix
K() € RN gtiffness matrix

B e R¥N>m _ influence matrix

LT € RP*N — output selector matrix
p. — ith control point

p', — ith manipulation point

State-space System:

n — state vector dimension
m — input vector dimension
p — output vector dimension

pm — measured output vector dimension

(
(

x(-) € R" — state vector
u
y(
e
r

) € R™ — input or control vector
) € RP — output vector
€ R? — error vector

(
(

)
)
)
() € RPm — measured output vector
)
) € RP — reference trajectory
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p(-) € R™ — external disturbance vector
v(-) € R — exogeneous signal vector (disturbances and references)
-) € R™ — uncertainty vector

e R — state matrix

N, — process noise

n,, — easurement noise

Robot Hybrid Control:

0, — actual robot joint angles

6. — robot joint angle error

0.. — selected subspace joint angle error

xy — desired end-effector position/orientation

@, — actual end-effector position/orientation

@, — end-effector position/orientation error

@, — selected end-effector position/orientation error

fq — desired end-effector force/torque

1X



f. — actual end-effector force/torque

f. — end-effector force/torque error

feo — selected end-effector force/torque error
T., — selected joint torque error

7, — commanded joint torque from position
T; — commanded joint torque from force

S — subspace selection matrix

S+ — orthogonal subspace selection
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Chapter 1

Introduction

Robotics have become increasingly popular over the last 50 years, especially in indus-
tries for manufacturing, assembly, and mass production. In most of these applications
the objects handled are assumed to be rigid. More recently, the use of robotics has
expanded to other fields such as exploration and medical procedures. As the areas
in which robots operate develops, the tasks that they perform becomes more elabo-
rate and complex. These tasks may require interaction with objects that cannot be
assumed rigid. In fact, the task may require the grasping and maneuvering of com-
pliant objects, controlling the specific deformation of the object, or both. Examples
could include installing a rubber hose by stretching the opening over an exhaust port,
tying a knot in rope or string, or folding a piece of textile fabric. In these cases, we
not only need to accurately control the manipulators end effector, but to also pre-
dict the motion of the deformable object in question in order to command the robot
intelligently.

Research into deformable object handling is primarily focused into two distinct

fields: deformable object modeling, and robotic control strategies. The former focuses
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on improving the knowledge base of predicting how an object will deform given its
properties and whatever information is available about its current state. The latter is
concerned with planning and commanding the robot manipulator given the knowledge
of our object to precisely interact with said objects in a desirable fashion.

This thesis focuses on the control design aspect, specifically, in controlling the

deformation of the non-rigid object.

1.1 Problem Statement

The task addressed in this thesis is to deform an object into a desired configura-
tion as specified by a certain number of “control points” within the object. This
is accomplished by applying forces at different locations on the object, labeled as
“manipulation points.” This is often referred to as the indirect simultaneous posi-
tioning problem. This problem is described here in the 2-dimensional, planar case.
The planar object is an elastic material that is required to be deformed in a specific
way. The final shape is defined by specifying the desired locations of points on the
object that are labeled as control points, p' for i = 1,..., N,.. The deformation is
accomplished by applying forces to separate points on the object, for instance at the
object boundaries, that are labeled manipulation points, pi, fori = 1,..., ! Npm. The
problem then is to find the manipulation point positions, or similarly the input forces,
that will cause the control point positions to converge to their desired locations. This
is illustrated in Figure 1.1.

For this thesis, we assume that the forces are applied to the object using a robot
manipulator equipped with a force sensor at the end-effector. Given a dynamic de-

formable object model that approximately predicts the motion of the material, the
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Figure 1.1: Deformable object showing manipulation points with force inputs and
control points with target position outputs.

goal is to create a control scheme that determines the force inputs while monitoring
the output position of the control points.

An illustrative example of this task in the medical world is during a breast biopsy;
the needle is inserted into the tissue with the intention of extracting a sample from
a specific target location. However, the needle can cause the tissue to deform and
move this target location resulting in a poor biopsy sample. If we monitor the target
location using some imaging modality, and place robotic paddles at the boundary
of the tissue, then we can “stabilize” the target location to be on the needle path.
Another example found in the literature is when manipulating textile fabrics. Certain
locations in the fabric may have required destinations to complete a task, such as for
a sewing operation. Clearly, the manipulator cannot move the the specific locations

directly or else interfere with the sewing needle, motivating an indirect positioning
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scheme.

1.2 Thesis Contribution

This research proposes a solution to the indirect simultaneous positioning problem
based on a control technique known as robust linear output regulation. The controller
will determine the forces necessary to apply to the manipulation points in order to
accurately deform the object. Deformable object models based on mesh-free methods
form the basis for this control scheme. The model is linearized and treated as a
classic output regulation problem. Using this approach we can derive, systematically,
controller gains that ensure stability and convergence of the target control point
to desired set-point trajectories. Additionally, since deformable object models can
become significantly complex, the use of model reduction is examined in our control
scheme when determining the gains for a reduced-order controller.

The controller is designed using the following steps:

1. Model the deformable object using a suitable method such as FEM, mesh-free,

mass-spring-damper, etc.

N

Linearize the model about the undeformed state to obtain a state-space repre-

sentation
3. Apply model reduction to reduce the state dimension of the plant

4. Test if the regulation solution exists by performing stabilizability, detectability,

and solvability tests on the model
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5. Formulate the controller and state-estimator gains using linear robust output

regulation theory

The controller design is validated in simulations using MATLAB’s Simulink® and
a nonlinear mesh-free deformable object model programmed in C++. Experiments
were conducted using CRS Catalyst-5 robot manipulators to apply the manipulation
point forces to a soft liquid plastic object. A stereoscopic camera monitors the output
positions of the control points using infrared LEDs for measurement feedback to the
controller. The results demonstrate the effectiveness of applying a robust linear out-
put regulation based control scheme to a robot manipulator to accurately manipulate
a deformable object.

Deformable object models are becoming more readily available and better under-
stood, allowing more accurate and sophisticated control schemes to be developed. The
benefits of incorporating robots to manipulate these objects can be realized, whether
it be for automotive assembly tasks, textile fabric handling, or surgical procedures.
Tasks that still predominantly require human workers can become automated to re-

duce costs, eliminate tiresome repetition, and increase precision and accuracy.

1.3 Organization of Thesis

Chapter 2 highlights the current state of research in the area of deformable object
manipulation. Chapter 3 outlines the basic theory behind formulating a robust output
regulation control. Following, the details of performing model reduction on the object
model are given in Chapter 4. Chapter 5 formulates the control law as it applies to our

models and details the simulation and experimental setup. The results of simulations

ot
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and experimental tests are presented in Chapter 6. Finally, Chapter 7 discusses the
conclusions regarding the results and recommendations for further developments.

This research has resulted in the following papers:

e Fanson, R. and Patriciu, A. (2010). “Model Based Deformable Object Ma-
nipulation Using Linear Robust Output Regulation”. 1In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

(To appear.)

e Fanson, R. and Patriciu, A. (2010). “Robotic Assisted Deformable Object Ma-
nipulation.” In preparation to be submitted to the International Journal of

Robotics Research (IJRR).



Chapter 2

Literature Review

There are numerous industries that benefit from the ongoing research of deformable
object manipulation tasks such as knot tying, assembly of rubber parts. textile fabric
handling, sheet metal handling, and medical robotics, to name a few. The active
areas of research can be divided into four main categories: object modeling, planning
and control, collaborative systems, and industrial experiences (Henrich and Worn,
2000). In this thesis, the primary focus is on the control aspect. More specifically,
the goal is to accurately control the specific positions of points within a deformable
object. In much of the literature, this task is referred to as indirect simultaneous
positioning. The basis for the controller is a deformable object model constructed
from one of several approaches available to approximate the object deformation. In
this section, we highlight some previous research in the areas of deformable object

modeling and robotic interactions with non-rigid materials.
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2.1 Deformable Object Modeling

Deformable object modeling emerged for use in computer graphics. The applications
have grown from early use in animation, to a basis for training in virtual reality
simulators, and recently haptic environments and robotic deformation control. Many
of the methods that have been explored throughout the years are summarized in a
recent survey by Gibson and Mirtich (1997).

For animation purposes, many of the early techniques were based on non-physical
models, where the designer simply defines the desired deformation manually using
some control points or parameter adjustment. The object’s curve or surface would
be inferred from these points using some mathematical interpolation such as a cubic
spline. Later models become more based on physical representations of objects rather
than a manual definition of the deformation. Taking advantage of growing compu-
tational power, this shifts the workload of defining the deformation onto computer
calculations rather than an animator’s manual specification. Much of these physi-
cal models are based upon mass-spring-damper networks. Platt and Badler (1981)
demonstrate this in early work by using tension nets to animate facial expressions.
Terzopoulos and Waters (1990) used a dynamic mass-spring-damper model consisting
of three separate layers of tissue to model the human face.

Mass-spring-damper models are intuitive and well-understood, however the ap-
proximation is often crude and may not truly represent the physical system. Also,
it can be difficult to approximate the spring stiffness and damping coefficients of the
physical objects. Current deformation analysis is generally done using models that
are derived from equations of continuum mechanics, such as finite element methods

(FEM). FEM models can be used to perform both static analysis to determine the
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final deformation of an object given a set of external forces, or dynamical analysis
where the inertial and damping (or viscous) forces are also taken into account. Ex-
amples of FEM use in deformable object modeling can be found in Gourret et al.
(1989) who use FEM to animate the deformations that occur between a human hand
and a deformable object in a grasping task. Bro-nielsen and Cotin (1996) apply FEM
to predict real-time tissue deformations for use in virtual reality surgical simulators.

Although FEM maintains a dominate role in deformation analysis in many fields,
large deformations or structural changes often involve recomputation and remesh-
ing of the object. Recently, there has been significant development in mesh-free
methods that can handle these large deformations without the need for remeshing
computations. These methods approximate the deformation using only nodes and no
elements or mesh. Several variations exist including Smooth Particle Hydrodynamics
(SPH), Particle in Cell Methods (PIC), Diffuse Element Methods (DEM), Element-
Free Galerkin Methods (EFG) and Reproducing Kernel Particle Methods (RKPM)
(Chen et al., 1996). A survey of these methods is presented in Belytschko et al. (1996)
and more recently in Babuska et al. (2002). Chen et al. (1997) describe the details
of using the RKPM method to approximate large deformations in nonlinear bodies.
They then employ this method to perform large deformation analysis of hyperelastic
and nearly incompressible rubber materials.

The control law in this thesis is derived independent of the modeling technique
used and assumes only that the method provides a dynamic analysis of the deformable
object. The dynamic model then yields a second order differential equation of the
form

M(d)d +V(d.d)d + K(d)d = f.
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For the simulations a experimental results presented in this thesis, we use the RKPM

method for the deformable objects model and the basis for the controller derivation.

2.2 Robot and Deformable Object Interaction

Although much of the deformable object modeling developed to this date was influ-
enced by the needs of the computer animation world, their use in robotics is spawned
by a growing need for automated deformable object interactions in industry. A recent
overview provided by Henrich and Worn (2000) outlines a few of the research papers
published with regard to modeling, control, and industrial applications of robotic
manipulation of deformable objects. Additionally, Saadat and Nan (2002) describe
much of the industrial applications that have focused on being able to manipulate
deformable objects. According to Saadat, specific industrial tasks are defined and
categorized based on either 1D (linear), 2D (sheet/planar), and 3D materials. Cur-
rently, the majority of research is focused on 2D applications and motivated by fabric
and garment applications, but as robotics in medical and food industries become more
popular, much new research may shift towards 3D applications.

Much of the linear robotic and deformable object research is focused on manipu-
lation of wires, cables, ropes, and knot-tying tasks. Chen and Zheng use cubic spline
functions in conjunction with a vision system to approximate beam deformation in
Chen and Zheng (1991) and use this model to mate a flexible beam with a rigid hole in
Zheng et al. (1991). Wakamatsu et al. model linear objects by minimizing the poten-
tial energy of the object subject to the geometric constraints as seen in (Wakamatsu
et al., 1995), (Wakamatsu et al., 1996), (Wakamatsu et al., 2002), and (Wakamatsu

and Hirai, 2004). Nakagaki et al. (1997) expand on the modeling work of Wakamatsu

10
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for inserting a flexible beam into a rigid hold. They account for plastic deformation
of a wire by measuring the wire shape via a stereoscopic camera and measure the
force at the tip of the wire.

For practical deformable object manipulation, the notions of image-based feedback
and object modeling are indispensable. They are a common basis in most applications
of deformable object manipulation where the desired task is to accurately control the
deformation of a soft object. This generally involves defining certain points within
the object which are manipulated inputs, and certain points within the object that
are monitored output positions to be controlled, commonly referred to as indirect

simultaneous positioning.

2.2.1 Indirect Simultaneous Positioning

The indirect simultaneous positioning problem was first addressed in Wada et al.
(1998). Their work focuses primarily on textile fabrics which they model using a
mass-spring-damper system and use the linearization of this model as the basis for
their control law. The control law is based on a Jacobian relationship between the
manipulation and control points. The convergence of the control points to their
desired positions is based on iterative control method that incrementally determines
the manipulation points that will result in the desired control points. Wada et al.
(1999) then also incorporate the planning of robot finger location, and in Wada et al.
(2001) they incorporate PID control on the feedback to ensure robustness on an
approximate model, provided the deformation is not too great for the given model.
Shibata and Hirai (2006) use a similar model based PID control to control the

position and deformation of a soft object. However, they use this to determine the

11
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force inputs at certain location on the object that are required to achieve the desired
positions of other points. Also, their tests only confirm the stability on a linear,
I-dimensional, mass-spring-damper models.

Smolen and Patriciu (2009a) take a slightly different approach which uses the
reproducing kernel particle method (RKPM) to model the deformable object. The
model is used to calculate a Jacobian transformation between the manipulation points
and the control points such that the manipulation points are moved incrementally to

positions that will yield the desired control point locations.

2.2.2 Needle Target Stabilization

Significant literature in deformable object manipulation is focused on medical needle
insertions. In this application, typically there is a target location with a soft tissue
where a task must be performed, such as taking a biopsy sample. Upon insertion of
the needle, soft objects typically undergo deformation that causes the target point to
move. A possible solution involves having the surgeon use steerable needles and image
guidance, such as ultrasound, to try to hit the target. The work of DiMaio in Di-
Maio and Salcudean (2003a), DiMaio and Salcudean (2003b), DiMaio and Salcudean
(2005b), and DiMaio and Salcudean (2005a), focuses on combining deformable object
and flexible needle models to determine a complex needle trajectory that accounts
for any deformation of the target or needle in the insertion process.

Other research shows promising results of using robot manipulators at the bound-
ary of the tissue to instead keep the target location on the needle path. A noteworthy

paper by Mallapragada et al. (2007) describe a PI control scheme to keep a target
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biopsy location on a needle path defined in a plane. They apply forces on the bound-
ary of a cylindrical object using two, 1-DOF robotic fingers positioned 90° to each
other and a fixed boundary opposite each finger. In Torabi et al. (2009) the infor-
mation about the target point and potential obstacles is used to plan manipulation
point locations and the needle insertion site for prostate biopsies. The manipulators
actuate one at a time in a phased control scheme as the needle is inserted to both
avoid sensitive tissues and minimize targeting errors. The control is verified using 2D
nonhomogeneous mass-spring tissue models. Smolen and Patriciu (2009b) stabilize
the target to the needle path using an RKPM model and a Jacobian relationship be-
tween a paddle placed at the object boundary and the target point. Their simulations
test both a static paddle and dynamic paddle placement. Their results show that a
static paddle placed optimally at a boundary location can help minimize targeting
error but depends greatly on the object properties. In contrast, a dynamic paddle
placed at a location that gives optimal control over the target location is much more

justified for nonhomogeneous objects.

13



Chapter 3

Output Regulation Control

The control law applied to the deformable object is based on a dynamic second-
order model of a discretized object, such as finite element model, mesh-free model, or
mass-spring damper system. The nonlinear dynamic system can then be linearized
about the equilibrium point, and reformulated to a set of first order differential equa-
tions and represented as a state-space model. This form allows the problem to be
approached as a classic output regulation control problem. Any nonlinearities, mod-
eling uncertainties, and unknown disturbances to the system that cause a deviation
from the nominal plant within some open neighbourhood, are compensated with a
robust controller. The next sections outline the linearization and reformulation of the

dynamic model into a state-space system and the derivation of a robust control law.

3.1 State-Space Representation

Assume that a deformable object is discretized and modeled using N points, or nodes,

distributed throughout the body. The control points, p’, and manipulation points, p’,

14
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are assumed to be explicitly included as nodes. The object can be linear, planar, or 3-
dimensional. Let the number of space dimensions be k and therefore the displacement
of each node can be represented by a vector (or scalar) in R¥. Let the displacement of
all nodes be represented by the stacked vector d(t) € R, In general, the equations

of motion for the object can be described by the second order system

M(d)d(t) + V(d.d)d(t) + K(d)d(t) = f(t). (3.1)

The kN x kN matrices M(d), V(d, d), and K (d) represent the mass, damping, and
stiffness matrices, respectively, and f(t) € R*Y represents the vector of external force
distribution applied to each node. The mass, damping, and stiffness matrices are most
likely to be non-linear. This dynamical form is shown to be obtainable from several
different deformable object modeling approaches in Gibson and Mirtich (1997).

Our goal is to linearize and reformulate the nonlinear dynamical model to a fa-

miliar, continuous, time-invariant state space representation

x(t) = Ax(t) + Bu(t)

y(t) = Cz(t) + Du(t) (3:2)

where x(t) € R" is the state vector, u(t) € R™ is the input vector, y(t) € RP is the
output vector. Note that by doing so, the linear model is only a good approximation
for deformations within a certain neighbourhood of the equilibrium point.

Referring to the dynamical model (3.1), assuming that the control points coincide
with nodes of the discretized model, the outputs for this system are simply the posi-

tional displacements of these nodes. Accounting for output, the dynamical system is
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now described by

M(d)d(t) + V(d.d)d(t) + K (d)d(t) = Bul(t)

y(t) = LTd(t). (3.3)

The matrix L7 € RP**N is a selector matrix with entries of simply 1 or 0 which define
which displacements represent the positions of our control point nodes of interest
The notation LT was chosen to be consistent with model reduction presented in
Chapter 4. Note that the framework does not change if the control points do not
coincide with model nodes but rather lie somewhere in between. The output of control
point displacements could then be defined as some interpolation of the displacements
surrounding nodes, resulting in a more complex output matrix. The assumption
merely simplifies the formulation for clarity. Additionally, the external force vector is
decomposed into f(t) = Bu(t) such that w(t) € R™ includes only input (or control)
force signals and B in an influence matrix that describes how they distribute amongst
the individual nodes.

First, rearrange the system in (3.3) to

d(t) = —M(d)"'K(d)d(t) — M(d)"'V(d.d)d(t) + M(d) "' Bu(t)

y(t) = L"d(t) (3.4)

where the mass matrix M is positive definite for a deformable object and therefore
invertible (Gibson and Mirtich, 1997).

Note that this is still a nonlinear system that would be best described in state

16
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space form as

y(t) = h(x(t), u(t)). (3.5)

Therefore, we linearize the system about the equilibrium point by evaluating the
M(d), V(d.d), and K(d) matrices of the object at the undeformed state. In other
words, we extract from our model M (0), V(0,0), and K(0), which we will abbreviate
to simply M, V, and K. Then, rewrite (3.4) and including the trivial equation d=d

to yield

d=d

d=—-M"'Kd—M'Vd+ M 'Bu

y=1L"d
or in matrix form

d 0 I d 0

.o = . + ~ u

d —M1'K —-MW| |d M-'B
[ d

y=1|L" o | |- (3.6)

L d

17
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T
; T :
By choosing the state = [dT d } we can write

T = Ax + Bu

y=_Co (3.7)
where the linear state space matrices are

0 I 0 .
A= B CZ[LT O] D:M.
MK —Mv M-'B

Note that these matrices are effectively the same as finding the partial derivatives of

our nonlinear state-space equation in (3.5):

of of Ooh oh
A= —(0,0), B = —={0,10), C = —(0,0), D =—(0,0
c‘?a,‘( ) 0u( 0); 8;r( ) 8u< )
evaluated at the origin (x,u) = (0,0). This linear, time-invariant state space model

of our deformable object will be used for the output regulation control described in

the next section.

3.2 Regulating Control Law

Here, we consider the linearized state-space model described in the previous sections
and formulate a robust controller that will compensate for the modeling uncertain-
ties and nonlinearities. Much of this formulation is based on the output regulation

theory first described by Francis (1977) and further detailed in Huang (2004). For

18
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completeness, the key concepts of the control law formulation will be highlighted in
this section. This section follows the formulation presented in Huang (2004). For

further details the reader is referred to his work.

3.2.1 Linear Output Regulation

We begin by taking the general state-space model of a linear time invariant system

subject to disturbances, p.

& =Az+ Bu+ E,p

y=0x+Du+t Fp. (3.8)
Given a reference trajectory, r(t), the tracking error we wish to regulate is
e(t) =Cwe + Du+ Fyp — 7. (3.9)
The goal is to find the control signal, u(t) such that

lim e(t) =0

t—o00

T
If we combine the disturbances and reference trajectories into a vector v = [TT pT}

representing all exogenous signals with known dynamics to be © = Ajv, we can rewrite
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the plant and exosystem as

T = Ax + Bu -+ Ev
’l'):Al’U

e=Cxz+ Du+ Fo. (3.10)

where F = {0 Ep} and F' = [_ I Fp}.

A solution to the regulation exists if there exists matrices X and U such that

XA =AX+BU+FE

0=CX+DU +F. (3.11)

These are known as the regulator equations. In fact, Huang (2004) shows that a

solution exists if the following conditions are satisfied:

Condition 3.1. The pair (A, B) is stabilizable

A FE
Condition 3.2. The pair {C’ F} : 15 detectable
A0
A-)M B
Condition 3.3. For each eigenvalue, X\, of the matriz Ay, we have rank
C D

-+ p

To help interpret the regulator equations, consider the simplified problem where

the plant is disturbance free and the exogenous system consists of only set-point
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reference trajectories. Therefore A; = 0 and

T = Ax + Bu

y = Cz + Du. (3.12)

In order to achieve regulation, there needs to be a final equilibrium state, *, and
control signal, w*, such that the system dynamics have reached steady-state and the
system output has reached the reference signal. Mathematically,

lim &(t) = Az" + Bu* =0

t—o00

tlim y(t) =Cz*+ Du* =r. (3.13)

We can write this as

- (3.14)

for which a solution exists if the matrix on the left has full row rank, implying we
must have at least as many control inputs, m. as outputs. p. A unique solution exists
if the matrix is invertible which would imply the number of control inputs, m, equals

the number of outputs. p. and condition 3.3 is satisfied. This gives

-1

x* A B 0 M X 0
= = (3.15)
u* C D r N Ul |r

Wada et al. (1999) emphasize the condition that the number of manipulation points

must at least equal the number of control points. However, they do not explicitly
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state that there may be boundary conditions or characteristics of the object which
forbid a solution. Condition 3.3 is essential to ensure a solution exists.

Furthermore, if m > p and the solution to (3.14) does exist, there are multiple
solutions for * and w*. One possible solution is the right pseudoinverse represented

by

J T 7T —1
A B A B| |A B
(3.16)
C D C D| |C

In the situations where m > p it may be advantageous to use the extra degrees of
freedom to impose additional constraints on the system. In fact the pseudoinverse
stated above results in the min-norm solution which minimizes the 2-norms of the
final state * and control signal w*.

From these linear equations, when the solution does exist, we can find * = Xr

and u* = Ur. At steady-state this gives,

& =AXr+ BUr

y=CXr+ DUr. (3.17)

For this to be equivalent to equations (3.13) we need X and U to satisfy

0=AX + BU

0=CX+DU—1 (3.18)

which are exactly the regulator equations for the set-point, disturbance-free case.

To obtain the generic regulator equations we simply reintroduce the disturbances



M.A.Sc. Thesis - Richard Fanson McMaster - Electrical Engineering

to the exogenous signal v with matrices £ = {Ep 0} and F = I:Fp

_[}. In this
case, the dynamics will not settle to zero, but rather to an invariant subspace which

is a mapping of the exogenous signals * = Xv and thus € = Xv = X A;v, yielding

& = (AX + BU + E)v = X Ajv

e = (CX + DU + F)v = 0. (3.19)

where the feedforward control signal w = Ur keeps the error e at zero (Isidori et al.,
2003). At the heart of the regulation problem is asymptotically approaching this
invariant subspace for any initial conditions.

For the proof that a solution to the regulator equations still exists, the reader is
referred to Huang (2004) and Isidori et al. (2003).

As explained in Huang (2004), assume that the full-state is available for feedback
and that there is no uncertainty about the plant. The controller considered to solve

the regulation problem is given by
u= K,z + K,v (3.20)
Under this control scheme, the closed loop system becomes,

&= (A+BK,)z+ (E+ BK,)v
U= AI’U
e=(C+DK,)x+ (DK, + F)v (3.21)

From before, we know that if the system can be regulated, the steady-state trajectories
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will be

& = (Xv) = X0 = XA

¥ = Xv
u* =Uv
e=20. (3.22)

The closed loop system is now

XAv=(A+ BK,)Xv+ (E + BK,)v

0=(C+DK,;)Xv+ (DK, + F)v (3.23)

From this, to achieve regulation we could design K, to stabilize (A + BK,), then
solve (3.23) for X and K, to get the final controller (3.20). However, this would
require resolving for X and K, for every redesign of the matrix K,. Noting also our

controller form (3.20), on the invariant subspace we have the input signal

Uv =K, Xv+ K,v (3.24)

Substituting (3.24) into (3.23) to eliminate K, and K, and dropping the common v
terms results in the regulator equations (3.11). Thus we can instead solve for X and
U from (3.11) independently from designing K, and K,

The controller that solves the regulation problem can be summarized as follows:

1. Solve the regulator equations (3.11) (if possible) for X and U
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2. Design the feedback gain matrix K, such that (A + BK,) is stable
3. Design the feedforward gain matrix K, such that K, = U — K, X

The static state feedback controller is then given by (3.20).

3.2.2 Regulation with an Observer

The controller given in (3.20) assumes that the full-state is available for feedback. For
a deformable object model, this may not be realistic. The number of discretization
points, or nodes, can become quite large and it is unlikely that the position and
velocity of both the x- and y-direction of each node is available for full state feedback.

The solution is to employ a state estimator or observer. The control form becomes

u= K, + K,v

& = A% + Bu + Ev + L(yp, — Con® — Dyyut) (3.25)

Note that we have used the subscript m to differentiate between measured output y,,
and regulated output y for cases when we can measure more outputs to improve our

estimation.

Let the closed loop system state be z. = [z e,”]”, where e, = & — & is the state
P Sy



M.A.Sc. Thesis - Richard Fanson McMaster - Electrical Engineering

estimation error. The closed loop system becomes

. |A+BK, -BK, E + BK,
L = T+ v
0 A — Lcm 0
= Al'U
e= |(C+ DK,) —DKJ} T+ [DKU + F} v (3.26)

By the well-known separation principle, the closed loop system is stable as long as
the blocks (A + BK,) and (A — LC,,) are each stable.

The controller is now designed from

1. Solve the regulator equations (3.11) (if possible) for X and U

2. Design the feedback gain matrix K, such that (A + BK,) is stable
3. Design the feedforward gain matrix K, such that K, = U — K, X
4. Design the estimator gain matrix L such that (A — LC),) is stable

and implementing the controller (3.25).

3.2.3 Linear Robust Output Regulation

Often the nominal values of the plant matrices have uncertainty included such that

the plant model is described by

T = A,z + B,u+ E,v

e=Cy,x+ D,u+ F,v, (3.27)
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where the subscript w indicates the state-space matrices deviate from their nominal

values such that

Ap = A+ AA, B, =B+ AB, Ey=E+AFE

Cw=C+ AC, Dy =D+ AD, Fyo=F+ AF.

The classical output regulation considers the case where exogenous signals, v,
are generated by v = Ajv. However, for the task at hand we will consider set-
point inputs and assume no disturbance signals, making v constant and therefore
A; = 0. As before, the effect of the exogenous signals on the system is incorporated
by E = [() Ep}‘ and F' = {_[ Fp}

Following Huang (2004), if the full state is available, the control law can be used

for robust output regulation is of the form

u=Kx+ Kyz

2= Glz + G26 (328)

where « is the plant state vector, and z is a dynamic controller state vector to be
defined later to ensure robustness. The closed loop system, with augmented state

T
T, = {mT zT} . becomes,

Lo = 44(’10"130 + Bcu'v

e = CopZe + Deoyv (3.29)
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where
Aw + Bu‘](l Bw [(2 Ew
Acw - s Bcw -
Go(Cw + DyK1) G+ GoD Ky GoF,
Cew=|Cyp+ DypK; DyKs| Do = By (3.30)

Let the nominal plant values of this closed loop system be A..B.o,Ceo.Deo. The

output regulation problem now requires to design a controller such that
1. The matrix A is Hurwitz

2. For uncertainties, w with some open neighbourhood, W, the error trajectory

satisfies

lim e(t) = lim (Cpz.(t) + Depv(t)) = 0. (3.31)

t—o0 t—o0

Huang shows that this is equivalent to finding the unique matrix X, that solves

the matrix equations:

Xcu'Al . Acchu' =+ Bcw

0= Cv(:u'/\,cuY + ch- (332)

When the desired reference signals are constant, then X,.,A; = 0.
Equations (3.32) are solvable if (A, B,,) is stabilizable, (C\, A,) is detectable,

and

AU.' Bu'
rank =n+p, (3.33)
C"u' Dw

where n is the total number of states and p is the number of outputs to be regulated.
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Put another way, (3.32) requires there to be a mapping to an invariant subspace
of the form

V={l® 279 ie=Xv,2=29}. (3.34)

Given controller form (3.28), this subspace requires there to be matrices X,, and U,,,

that solve the plant equation

XwAl = Au'Xu' + Bu'Uu' + Ew

0= Cu.'Xw =i DwUu' + Eu (335)

as well as a matrix Z,, to solve the controller equation

Zu'Al = GIZw =t GZ(Cu!Xw =} DzuUu' i} Fw)

Up = K1 Xy + KsZy. (3.36)

Equations (3.35) are the robust version of our regulator equations and equations
(3.36) expresses that our controller contains an internal model. Combining (3.35)

and (3.36) we can rearrange to

XAy = (/’1 o B[\’l))&ru- + BK>Z,, + E,,
ZwAl = GQ(Cu' + Du'l(l)"‘(u‘ + (Gl + GQDU'I(Q)ZU'

0= (C+ DK)Xy + DKsZy + F,. (3.37)
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Equations (3.37) are in fact the same as (3.32) with

The problem now is essentially finding a solution to the invariant subspace represented
by (3.37) from the regulator equations (3.35), and the internal model (3.36) and
designing a controller to asymptotically approach this subspace.

Huang (2004) shows that if the dynamic portion of the controller 2 = Gz 4+ Gse
contains an internal model of the exogenous signals, and (A, B) is stabilizable, then

the pair
A 0 B
G0 G| |GD

is also stabilizable. In fact, this pair corresponds to the augmented system,

t = Ax + Bu + Ev
z':Glz—f-GQe

e=Cz+ Du+ Fv (3.38)

where the augmented plant matrices are

A 0 B

-
1
wel!
Il

GQC G] GQD

Then, a stabilizing controller for the augmented system leads to the solution for the

linear robust output regulation problem (Huang, 2004).
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In order to incorporate an internal model, the matrices G; and G5 can be defined
with the form

0 F s O | 0]
0 0 0 0
Gy = Gy =
0 0 el 0
_—a‘,\.] —ap_11 —alf_ LI_

where I is the dimension of the error vector e and o,

. ap_; are the coefficients of
the minimal polynomial of A;:

f()‘) = )‘k g al/\k‘1 S G’A-_l)\l + Q.

For more details regarding the formulation of a controller with the internal model

principle, the reader is referred to Huang (2004) and Isidori et al. (2003).
In addition to the dynamic controller state z, as before, the positions and velocities

must be estimated using a state estimator. This is accomplished by including another

dynamic state in the controller, &. The new controller becomes

u = [\Hi + [\’QZ
z =Gz + Gse

& = A% + Bu+ Ev + L(y,, — Cou& — D,u) (3.39)

where L is the observer gain matrix and & is the estimation of our state variables.

Note, again, the subscript m to differentiate between y,, and y. Again, we need to
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design L such that A — L), is Hurwitz to ensure the observer error asymptotically
decreases to zero.

To show that this will still solve the output regulation problem we need to show
that the closed loop system is stable. Let the closed loop state be z. = [ 2T e,]",

where we will use the error of the observer. e,. instead of the observer state, & because

it gives a more useful realization. The closed loop system matrix A. becomes:

A+ BK; BK, —BK;
Ac = GQ(C + D](l) Gl + GQD[{Q —GQDjﬁ'l
0 0 A - LC,

By the separation principle, the eigenvalues of the closed loop system are the union
of the eigenvalues the augmented system (3.38) and (A — LC,,). Since K;, K5 and
L are designed such that (3.38) and (A — LC,,) are stable, the closed loop system is
stable.

The overall process can be summarized as follows:

1. Model the object using the preferred method (e.g. FEM, mesh-free, etc.)

2. Linearize the model about the undeformed state to extract the state space model
matrices A, B, C, and C,, (D and D,, are zero). For these models, we assume

no disturbances, therefore £ =0 and ' = —1.
3. Test that (A, B) is stabilizable
4. Test that (A, C) is detectable

A B
Test that rank =n+p

¢ 0

t
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10.

11.

Find G and G5 such that 2 = Gz 4 Gye incorporates an internal model of A;.
Augment the system model, as in (3.38)

Find fixed gain matrix K = [ K ]{21 such that A + BK is stable

Test that (A, C),) is detectable (if using measured output y,,)

Design observer gain matrix L such that (A — LC),) is stable

Implement controller (3.39).
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Chapter 4

Model Reduction and Reduced

Order Control

Deformable object approximations for physical systems, such as finite element meth-
ods, have become increasingly popular and quite accurate in predicting the behaviour
of physical systems. However, as the level of detail and accuracy of the models in-
crease, so too does the dimensionality. This can lead to large computational expenses
and lead to simulations that no can no longer be used for real-time control. In order
to overcome the dimensionality problem, a technique know as model-reduction can
be used. This involves creating a system of much lower dimension that still captures
the important characteristics of the original systems response. Primarily, there are
two methods of achieving this reduction: SVD-based and moment-matching based
methods (Antoulas et al., 2001).

The model reduction problem is outlined in Antoulas et al. (2001) and restated

here for completion. The problem involves a full dynamical system model as defined
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by

which we will abbreviate to

Al|B
Y = € R(n+p)x(n+m).

The object of model reduction is to find a much smaller order system

c R(iz+1))><(f1+m)

with n < n that approximates the original system. The approximation must ensure
a significantly small error in a region of interest, and that properties such as stability
and passivity are preserved.

Recall that we are concerned only with the dynamical model of a deformable

object which can be represented by a second-order differential equation,

M(d)d+ V(d.d)d + K(d)d = Bu

i = ird
and in state-space with matrices,
0 I 0 R
A= B = N C= |iLT ()}
~-M'K —-M~V M-'B
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and the state

Because of the second order structure of our system, and the state-space matrices have
a natural partitioning within them, we follow a reduction method that preserves this
structure. There are several papers that focus on reduction of this type or model such
as Chahlaoui et al. (2005), Bai and Su (2005), Li and Bai (2005), Li and Bai (2006),
and Lin et al. (2007). The common procedure involves using a moment-matching type
reduction via an Arnoldi method to project onto a Krylov subspace. In this thesis,
we use the algorithm reported in Li and Bai (2006), which is summarized below.
Let the second order system be arranged in a slightly different state-space form

and include the desired output, dropping parentheses for clarity:

vV M K 0 B
T+ T = u
~W 0 0o W 0
y=|LT 0|z

where W € R¥*N can be any nonsingular matrix (often set to either —A/ for sym-

metry or [ for simplicity). Let these matrices be defined as

with Cr € R™", G € R™", Br € R™™ and Lg € RP*". The subscript R is

used to denote their use in the reduction algorithm and avoid any confusion between
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similarly named matrices presented in this thesis.
The frequency domain transfer function for this MIMO system, X, in this form
can be expressed

H{s) = LE(GR + SCR)_IBR

The reduced transfer function of the system ¥ sought is
H(s) = LT(Gr+ sCr) ' Bg

where C’H e R™xn GR € R™7 BR € R™™ and IAJ;’% € RP*™ The reduction is achieved

by using projection matrices X,Y € R"*" such that
- . . & T
Cr=Y"CgX, Gr=Y"GpX. Br =Y"Bp, Lg = LgXT

Because of the second order nature of the system we can notice the matrices in

(4.2) have a natural partition into blocks as in

ni no ny no

i CRI] CR]‘Z i GRU GRlZ
Cgr = 3 Gp=
n2 CRZI CRzz n2 GR21 GRzz
m p
ni BRI ny LR[
B = : L=
no BR‘Z n» LR2
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where n; + ny = n. The projection is performed by defining X and Y as

n, n2 ni no
mo | Xy 0 | Yy 0

X = , Y =
na O XQ ng O }/‘2

where ny 4+ 719 = n, such that the submatrices of the reduced system are in fact the

reduction of the submatrices. For example:

Cr=YTCrX

YT 0| |Cry Criol | X1 0
0 YQT CR21 CRQQ 0 XQT

§/1TCRM X }/ITCRHXQ

YQTCRQVXI YZZTCRQQXQ
and correspondingly, for all submatrices,
Cr; =Y Cr,X;, Gr,=Y"Gr,X;, Br =Y"Br, L} =L}X;

The X and Y projection matrices are found using an Arnoldi implementation as
stated in Li and Bai (2006). First, consider a few important concepts from Li and
Bai (2006).

The power series expansion of H(s) at s = 0 is given by

H(s) = Z(—l)fsiui (4.3)
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where M; are the moments. The reduced model has £ matched moments around s = 0
if M; = M, for 0 < i < k — 1, or equivalently, H(s) = H(s) + O(s*). Additionally,

define the kth Krylov subspace as
Ki(A. Z) % span(Z,AZ, ..., A*1 7). (4.4)
As stated in Li and Bai (2006), if

Ki(GR'Cr, G5! Br) C span(X) (4.5)

K (GR'C%, G Lr) C span(Y) (4.6)

then H(s) = H(s) + O(s**"). Therefore, by finding X and Y which spans the
Krylov subspaces (4.5) and (4.6), then we have found a reduced system with k + r
matched moments. Furthermore, if we define W in (4.2) as —M, then Cr and Gpg
are symmetric. This symmetry, as stated in Li and Bai (2006), allows us to find X

according to the Krylov subspace
Ki (Gr'Cr.GR'(Br Lg)) . C span(X) (4.7)

Then by setting X =Y the reduction satisfies H(s) = H(s) + O(s%).
Finally, as first mentioned in Su and Craig (1991), a key aspect to retaining the
second order nature of the system comes from the structure of the matrix GEIC'R as

seen in the MIMO transfer function in the general form

H(s) = LL(I + sGR'Cr) ' G3' Br.
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and from our desired Krylov subspace projection

Ki(GR'Cr,GR' Bp).

Because the block structure of

K'V K 'M
Gr'Cr=
~I 0

contains lower left block of the form o/ and lower right block of zero, it can be proven

[Su and Craig (1991), Li and Bai (2005)] that

span(Xs) C span(X,).

This allows X and Y to be defined using only X, as

N1 N Ny Ny
N 1 )( 1 O N 1 X 1 O
X = , Y =
Ny 0 X, N 0 X,

in order to keep the second order structure while performing the moment-matching
reduction.

Using these facts, the full Arnoldi-based reduction can be outlined in Algorithm
4.1. In this implementation for second-order structure-preserving reduction, there is
only control of two design parameters: sy — the frequency around which the moments

are matched, and £ — the order of moments matched.

For more detail and proofs of the Krylov subspace projection method of model
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Algorithm 4.1 Arnoldi-type reduction algorithm:

Set GH = Gpr + soC}

Solve GrQ = By for Q

for j=1tok—1do
Solve GrQ = CrQ; for Q
for i =1to jdo

Q=0Q-Qi(QrQ
end for A
Q1 = orth(Q)
end for N
Partition X = (Q1 Qy ... Q) as X = [/;;1}
2

X1 = Ol"[h()&;l)
X 0] o X1 0
Set X = {0 Xl] and Y = {0 XJ
Compute éR = )/TC'RX. G’]{ = )/TGRX, BR = YTBR, ifH = XTLH

reduction used in this thesis see Li and Bai (2005) and Li and Bai (2006).
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Chapter 5

Simulation and Experimental

Setup

This chapter describes the control law formulation more specifically as it applies to
our deformable object models using the theory outlined in Chapter 3 and Chapter 4.
Additionally, the simulations and experimental setup are described in detail.

The use of robust output regulation control theory on deformable is validated
through both simulations performed in MATLAB and experiments using robot ma-
nipulators and liquid plastic deformable objects. This section outlines the control
steps used for accurate robotic manipulation of deformable objects in simulations
and experiments. For all simulations and experiments presented in this thesis we use
only planar deformable objects. The deformable object simulations were designed
to mimic their experimental object counterpart part so that the same control law
derived in the simulation would be used to drive the robot manipulator in the exper-
iments. The methods and details of the simulation are outlined in Section 5.1 and

the equipment and experimental setup in Section 5.2.
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5.1 Simulation Setup

This section outlines the control design procedure as it applies to the deformable
objects used in both simulations and experiments. The same control scheme is used
in the experimental setup.

Deformable objects were modeled using a meshfree continuum model known as
the reproducing kernel particle method (RKPM) based on the findings of Chen et al.
(1996). These models are implemented in C++ and based on the stress-strain char-
acteristics of a soft plastic object, planar object that will be used in the experimental
tests. The characteristics are obtained from recording deformation and force charac-
teristics using a camera and robot manipulator. Then the parameters of the model
are optimized to match the deformation that occurs under load in the real object.
The details of determining the object parameters are shown in Appendix A. It should
be noted that the RKPM model was implemented as a quasi-static solver. Therefore
in simulations the control forces may result in large initial deformations of the non-
linear model since there are no viscous or inertial forces acting as resistance. Some
overshoot to appear in the simulations that may not be as evident in the experiments,
where inertial and viscous effects are present.

All simulations were conducted using MATLAB’s Simulink® software to synthe-
size the control signals and apply them to the nonlinear deformable object. The C++
object model is compiled into a Window’s dynamic link library (DLL) to allow inter-
facing with MATLAB and Simulink. Additionally, the RKPM implementation uses
a CUDA GPU to accelerate the DLL’s ability to solve the RKPM model with forces

input from the Simulink controller.
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5.1.1 Defining the Linearized System

The first step in the controller design is to extract the useful information from our
deformable object model. Recall that the dynamic object model with output is given

by

J

M(d)d+V(d,d)d+ K(d)d = f

y=1L"d (5.1)
where the state-space form desired is
&= Az + Bu
y=Cz (5.2)
with
0 I 0 .
A= B = i C= [LT 0} (5.3)
MK M7V M-'B
and state
d
x=| |. (5.4)
d

Compute the mass, damping, and stiffness matrices from the model, linearized by
evaluating them and the equilibrium point where d and f are zero.
The influence matrix B matrix needs to be created from knowledge of how ex-

ternal particles will distribute over the object nodes. This will vary depending on
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the modeling approach. As a simple illustration, consider the mass-spring-damper
model with four nodes as shown in Figure 5.1. For this simple planar model we have
node number N = 4 and space-dimension k& = 2. Define the displacement vector
d € R® such that the entries represent the x- and y-displacements of each node start-
ing with the top left and reading left to right. Two planar (two dimensional) forces
act on the two rightmost nodes which correspond to elements 3.4 and 7,8 of our d

T

vector. The external force vector would be f =10 0 F, Fyh 0 0 Fp Fp

Decomposing this simple into an influence matrix and input vector would give unity

entries:

o] oo o o

0 0000

Fip 1000 —Fll,_

Py _ 01 0 0] [Fyy (5.5)
0 0 0 0 0] | £y

0 0000 _ng_

Fy, 0010

| Foy | 00 0 1

Note again, that more complex influence matrices can be used to apply more dis-
tributed forces, depending on the model.

The selector matrix L7 is defined in a similar fashion by selecting which nodal
displacements represent the positions of nodes which we wish to regulate. In our
simple example, if we wish to use the two forces to control the position of the lower

left node, the positions would be entries 5, and 6 in d. The selector matrix would
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Figure 5.1: Simple 4 node MSD deformable object for illustration

simply be
000O0T1TO0O0O0
000O0O0T1O0 0.

For the linear state-space model, simply substitute M, V', K, B, and LT into (5.3).

Recall, for these models, that the D feedthrough matrix is zero. Additionally, as
explained in Chapter 3, we may have access to more states than the ones to be regu-
lated. In this case we also have the measurable output vector y,, = C), . The matrix
), € RP»*™ jg constructed in the same manner as C', using a corresponding selector
matrix L7 to indicate all the nodal deformations for which we have measurement
access. The feedthrough matrix in this case, D,,. is also zero.

To remain consistent with the formulations of Chapter 3, we assume that the
disturbances on the plant do not occur from any know exogenous signals and therefore
E = 0. Also, are reference signals, r(¢) are what we want the output y to exactly
match, therefore ' = —I. Finally, the exogenous reference signals are assumed to be

set-point signals with no dynamical model, giving A; = 0, as well.
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These matrices fully defined our linearized state space system with regulated out-

puts, and measured outputs, and error signal:

& = Az + Bu
Yy =0z
Yy, = G
e=Czx+ Fr. (5.6)

5.1.2 Reducing the Simulation Model

For each deformable model. the control law was applied to both the original full
state model, and the reduced state model. For cases when the model is reduced,
the procedure as outlined in Chapter 4 is followed, summarized briefly below for our
model.

Using the same mass, spring, and damping matrices, we form the a slightly varied

version of the state space equations with the matrices

Cniii +GRCD = BR’LL

Y= L'z
ym = LmRTw
with
VoM K 0 : . .
Cr = Ggr = Br = =iy Ia=i
W 0 0o W 0
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We use the subscript R to differentiate these matrices from any other similarly named
matrices already defined. Following Algorithm 4.1, we find the projection matrices
X and Y. For our problem, we reduced around the expansion point s; = 0 in the
algorithm because we wish to moment match around the origin of H(s). That is,
we desire to keep the low frequency moments of the MIMO transfer function. The

reduced state space matrices are
Cr=YTCrX, Gr=YTGgrX, Br=Y"By, I[E=1LLXxT [T.=1ILF. X"

The reduced state space form is recovered by

A= (G B= (B
3= by D=0
Cm = j;;Y;R Dm =0

For the different deformable objects tested, the reduced system is compared to the

original system to illustrate that the low frequency properties were retained.

5.1.3 Control Design

Once the state space matrices have been obtained, we need to ensure the object
model in combination with the manipulation points, control points, and any boundary
conditions are defined such that a robust regulating controller exists. This involves
ensuring the conditions outlined in section 3.2.1 are met. First, we ensure our matrix
pair (A, B) is stabilizable. Without this condition, the exponential stability of the

closed-loop system cannot be guaranteed by simple state feedback. For the models and
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configurations presented in the results of this thesis, the system is in fact controllable,
allowing more flexibility in the design of the stabilizing matrix gains. Next, we need
to be sure our system is detectable. For this we check the matrix pair (C,,, A) since
we are relying on the feedback of our measured output y,, and not just the regulated
output y. However, since we assume measurement feedback, but have a controller
based on error, we need to make sure that the error is readable from y,,. That is,
there exists a matrix 7" such that ' = T'C},,. Our formulations guarantee this since
the regulated outputs y are in fact a subset of the measured outputs y,,. Together
with the detectability of (C,,, A), this essentially ensures the detectability of (C, A).

For our simulations, these conditions are checked using the well known PBH tests

for stabilizability defined as
rank [A = AT B] =1

for all eigenvalues A\ of A, and for detectability defined as

for all eigenvalues A of A, where n is the dimension of the state vector . Finally, we

ensure that a solution to the regulator equations exists with the condition

B
rank =n-4p.

0

For the simulations presented in this thesis, all criteria to ensure a solution are
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met. The next step is to augment the plant system with an internal model variable z.
Defining the internal model for the exogenous signals is simple in the case of set-point

trajectories. It can be achieved by defining

zZ= Glz + Gge (57)

with G = 0,x, and Gy = I,4,. This is effectively incorporating an integral control

scheme for set-point reference signals. The augmented system is then given by

T A 0| |x B 0
— + u + T
z c 0l |z 0 —
with augmented state
~ @
& = (5.8)
2

The problem now remains twofold: determine the gain K; nd K, such that u =
Kz + Kyz stabilizes the augmented system, and design the estimator system for &
so that our actual controller law is u = K & + Kyz. We approach these problems
with the well-known linear-quadratic gaussian (LQG) control philosophy.

First, given the augmented system, we find the optimal stabilizing gain matrix K
from LQR design. That is, we wish to find the controller that stabilizes the system

and minimizes the cost function

F = / (2"Qx + u' Ru + 22" Nu)dt (5.9)
0
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under the state feedback form

u=Kz= |:[<1 ](2} . (5.10)
&
( can be interpreted as a penalty on the size of the states , R a penalty on control
signal size, and N penalizing a combination of the two.

However, since we have a desired set-point output y it makes more sense to pe-
nalize the desired output from deviating from its desired value and the control signal
from deviating from its steady-state value. Recall from Section 3.2.1 that these steady

state values are given from the solution to
= (5.11)

and from the solution to our regulator equations, we have * = Xr and u* = Ur. If
the system has equal number of inputs and outputs (i.e. m = p), and condition 3.3
is met, then we can solve

=1,

A B
(5.12)
0

The matrix X corresponds to the upper-rightmost n x p submatrix, and U the lower-
rightmost m x p submatrix. Alternatively, we could solve for these matrices from

block matrix inversion formulas which gives

X =A"'BS} (5.13)

U=25;" (5.14)
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where Sy = D — CA™!B is the Schur complement of A.

If there are more inputs than outputs (m > p), then we do not have a unique
solution. X and U are best solved from the Moore-Penrose pseudoinverse of the
linear system. In MATLAB, this is achieved using the pinv function. Note that this
results in the minimum 2-norm solution for * and «* to the linear system.

Mathematically, the cost function we want to minimize is
oo
7= [ fally = rlle + Sllzlls+ 2w~ wlla} (515
0

Modifying the cost function to instead minimize the square of the 2-norm of these
errors (which does not change the solution of the cost function), we can manipulate

to attain a proper LQR cost function as follows:

5= [ {ally = iR+ Bll=1B +lu— wl) o
= /ODC {aly—r)T(y—7)+B2"z+v(u—u") (u—u*)}dt
= /Ox {a(y"y —2y"r+r'r)+ 8272 + y(u — ) (u —u*)} dt
- /ox {a(2"CTCx — 227 CTCa* + 20T Cx") + 8272 + 7w — w) (u — u') } dt
= /Ox {(x —2*)"aCTC(x — x*) + 2" Bz + (u — u*)"7I(u — u*) } di
( aCtC 0| [(z—a%)

- /3C [(:c — )T zT} + (u— )y (u—u*) p dt
9 0 61 %

0o e acTC 0| ‘ A
:/ (x —x%) (& — &)+ (u —u*) 'yl (u—u) pdt
0
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which corresponds to an LQR problem with the weighting matrices

aCTC 0
G = B =yl N =0.
0 31
The «a, 3, and ~, parameters provide a convenient way to tweak the resulting gain
matrix and alter the transient response characteristics of the output while still main-
taining stability and robustness. Note that although they presented as scalars here,
a, [# and v could be defined as weighting matrices to affect the difference components
of ¥y, z and w individually.
Note also that the vectors in our cost function are & — &* and u — u*, as opposed
to simply @ and w. This means that our control signal over which we minimize must
be of the form

u—u"=K(z—x% (5.16)

or more properly

u=K(x -2 +u"
u=K(x—-—z")+ Kyz+u'
u=K(x—Xr)+ Kyz+Ur

u=Kx+ Kez+ (U—- K, X)r. (5.17)

Let the third gain matrix in (5.17) be K3 = U — K; X. Notice that this is exactly the
feedforward mapping of the reference signal r described in Chapter 3.
Upon substitution into are state space formulation, we see that using & — " and

u — u* with the optimal gain matrix KA will still stabilize the augmented system just
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as (5.10) would:

T A 0] |z B x ;
= + {1{1 1{2} + (U - K X)r
z C 0 z 0 z

A+ BK, BKs| |z B(U — K;X)
= + r
G 0 z 0

The closed loop state matrix, flc is exactly the same as it would be under control
law (5.10). Thus we can conclude that since, by definition, the LQR optimal gain K
stabilizes the augmented system under (5.10), the same K will stabilize the system
under (5.17).

The next part of LQG controller design is creating the state estimation &. Given

our state space system, we construct the estimation from

&= (A— LCy)& + Bu+ Lym, (5.18)

where the corrective gain matrix L is chosen such that A — L), is stable. Often, a
good approach to designing L is to approximate the process and measurement white
noise characteristics that affect our states and output, respectively, and minimize
their effect on the state-estimate. The optimal gain matrix L in the presence of this
noise results in the well-known Kalman-Bucy estimator.

For our simulations and experiments we assume the process noise n, affects the

system control input, with a variance of E(n,n!). Similarly, the measurement noise,

T

n,, is added to the output y,, with a variance E(n,, n,

). The optimal estimator
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gain L is obtained using MATLAB’s kalman command.

From this LQG approach, we have matrices K and L matrices that stabilize

A+ BK and A — LC,,, respectively. The entire control can now be described as

Z;ﬁ - (A - LC,”)QE I BU + Lym

Z=y—r

u = ](1{% + IX’QZ + ](37"

The topography of this control scheme depicted in Figure 5.2.

—» K,

r(t)

» z2=G,z + Gye
— 3l u=Kijx + Kyz

Controller

x(t)

£=(A-LC,)% + Bu+ Ly

u(t)

m—

% = fiz w

(5.19)

Im= h(x, u)

Nonlinear Plant

t
Vinf ))

State Estimator

Figure 5.2: Block Diagram representing simulation control loop.

5.1.4 The Feedforward gain, Kj

It is worth some discussion on the feedforward gain K3. This term is not necessary to

ensure robust regulation for the special case of set-point regulation. This is essentially

because the constant nature of the reference » means it can always be treated as zero
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under an appropriate change of coordinates. Since this term maps the reference signal
to our invariant subspace, a linear mapping of zero will still be zero. However, our
initial conditions, under the new coordinates, imply that we are not on the invariant
subspace, i.e. u(0) # Ur(0) and the integral term will force our control signal to the
mapping such that of lim, . w(t) = Ur(t). Since for set-point regulation we do, in
fact, know the initial conditions of w(0) and 7(0), as well as the entire trajectory of
r(t), using the feedforward matrix K3 will allow a faster convergence to the steady
state values of w and @ with the integration term only accounting for uncertainties
and disturbances of the system.

Additionally, for the case when the number of inputs equals the number of outputs,
(m = p), the use of K3 will not affect the final values of u. Since there is only one,
unique solution, the input must converge to the single solution to achieve regulation.
However, in the case where there are more inputs than outputs the results may
vary depending on settings of the LQR parameters and the solution obtained from
(5.11). For example, if we find the min-norm solution from the pseudoinverse, we find
the values of 4* and x* with the minimum 2-norms which solve the linear system.
Since the actual system is not linear and there is likely uncertainty present, these
values will not be the actual steady-state values, and the integral term will cause
convergence to the final values by minimizing the deviation of y and w from C'z* and
u*, respectively, as weighted by the LQR cost function parameters. If the feedforward
term K3 is omitted, then the final input values achieved are the ones that minimizing

the the deviation of y and u from zero, according to the LQR weighting parameters.
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5.2 Experimental Setup

In addition to applying an the control law on a nonlinear computer model in sim-
ulations, experimental test were done using robot manipulators and a physical de-
formable object. The object is constructed from soft liquid plastic solution. The
solution is mixed with either plastic softeners or hardeners to achieve varying stiff-
ness characteristics.

The control law to determine the forces applied to the object is the same as
described in the simulation setup of Section 5.1. However, the overview of system
changes slightly in the sense that we are no longer applying a force control signal
directly to the manipulation points of the deformable object as in the simulation and
no longer calculating the measured output directly from an object model. Instead,
the control signal is passed to the robot controller and the robot manipulator applies
the forces to the object. For the output signals, we monitor the manipulation point
displacement from the coordinates of the robot end-effector. Additionally, the control
point displacement is measured using a stereoscopic camera and an infrared LED
marker placed at the desired location on the object. The general overview of the
system is shown in Figure 5.3. The physical setup is seen in Figure 5.4 showing a
robot manipulator, stereoscopic camera, and planar object phantom with a single
control point and single manipulation point.

Although we monitor the position of the control point here directly using a stereo
vision camera, the method of determining the output position can vary. More gen-
erally, we need the error to be readable through whatever measured output, y,,. is
available. In a medical setting, this may entail monitoring a target in tissue by some

imaging modality like ultrasound guidance. The position of the manipulation points
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Figure 5.3: System topography representing the experimental setup.

-

Figure 5.4: Physical experimental setup with robot, camera and planar phantom.
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are another natural addition for plant output since most robotic manipulators have
an accurate feedback of the joint angles and thus the end-effector location via forward
kinematics. Since the controller is based on the feedback of an estimation of the states
of the plant model, any additional output fed into the estimator can help improve
the accuracy of the model.

The setup comprises two CRS Catalyst-5 five degree of freedom (DOF) robots
from Thermo Scientific. They are controlled using MATLAB’s Simulink interfaced
to the robot controllers using QuaRC® by Quanser. The robots are also equipped
with ATT’'s Gamma® sensors at the end-effectors to provide force and torque values in
six dimensions. The stereoscopic camera used is the Bumblebee2® from Point Grey
Research. The 3D position of the control point is calculated from the stereo images
using a C++ program and sent to Simulink real-time using UDP protocol.

The use of this equipment in the experimental setup requires two important as-

pects to be integrated with the output regulation controller:

e camera to robot registration for control point feedback

e hybrid position/force control to apply the forces in object plane

5.2.1 Camera Registration and Control Point Feedback

Image registration is required because the 3D position of the control point is cap-
tured in the cameras frame of reference and needs to be converted to a point in
the robot’s coordinate system. We accomplish this with a fairly simple three point
registration algorithm. Three points, represented with infrared LED markers, are
placed in a known location in the robots workspace. These points are captured in

the initialization of the camera and thus known in the camera coordinate system as
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well. Using these three points we can construct the rotation matrix that converts
the camera coordinate frame the the robot coordinate frame. Any displacement of
the control point recorded in the camera coordinate system is converted with this
rotation to a displacement in the robot coordinate system. For these experiments,
the object is placed in the robot workspace such that the x- and y-directions agree
with the robots coordinate system, thus a further registration between object and
robot is not necessary. Further details of the image registration algorithm are given

in Appendix B.

5.2.2 Robot Hybrid Position/Force Control

The hybrid position/force control is required so that we can command the robot with
desired position for the z-coordinate as well as pitch and roll angles, while issuing force
commands in the x,y-plane. The general control scheme is illustrated in Figure 5.5.
The idea is to break the tasks of position and force control into two orthogonal
subspaces, determine the joint level torques required to perform each, and sum them
to create the total manipulator input.

From this diagram, we see that the joint angles of the robot are given by an n x 1
vector 6, where n is the number of joints. The torques controlling the joints of the
robot are given in the n x 1 vector 7. The joint angles of the robot can be solved, via
forward kinematics, for the 6 x 1 vector @, which represents the full Cartesian position
and orientation of the end-effector. Similarly, a sensor at the end-effector gives a 6 x 1
vector measuring the Cartesian force and torque acting on the end-effector, f,.
The error describing the difference between desired and actual Cartesian posi-

tion/orientation is @, = x4 — &,. The error describing the error between the desired
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Figure 5.5: Block diagram illustrating the control law used for hybrid position/force
control of the robot manipulator (Fisher and Mujtaba, 1992).

and actual Cartesian force/torque is f, = f, — f

a*

In order to achieve hybrid control, we simply select the subspace in which we want

to achieve a desired force/torque, and the orthogonal subspace remains in position

control. This is accomplished with the projection matrices S and S+. For our exper-

imental setup, we use 5-DOF robots with the desired subspace for force control being

the robot’s x,y-plane. Therefore, the projection matrices we use are simple 5 x 6

selector matrices given by

I
o o o ©
o
—
)
o
o

00100
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5.3 Position Control Law

The selected Cartesian position/orientation error is given by

Tes = Sz, (5.20)
The relationship between small Cartesian errors and joint-level errors is given by

. = JO, (5.21)

where the Jacobian matrix J represents a first order approximation of the relationship
between differential joint-level motions and Cartesian space motions. Therefore, our

selected subspace errors are related to the joint-level errors by
BE, = i, =870, (5.22)

As shown in Fisher and Mujtaba (1992), the matrix SJ is not invertible but rather

we solve for one of the infinite number of solutions, 6., from
Bee = (S)" By (5.23)

Here, (SJ)" is the pseudoinverse of (S.J) given by

1

(SNt =(SHT[(SI)(SI)T] (5.24)

and is often called the right pseudoinverse. This corresponds to finding the mini-

mum two-norm solution of 8, that satisfies (5.22). It should be noted that there are

62



M.A.Sc. Thesis - Richard Fanson McMaster - Electrical Engineering

other solutions for the joint level error that can be found from adding vectors in the

orthogonal complement space to (SJ)" as given by the general solution

Oc, = (ST) ey + [I = (ST)T(ST)] 2 (5.25)

However, there are conditions that must be satisfied in order to remain kinematically
stable, and the minimum norm solution is the simplest that meets these constraints.
For more details the reader is referred to Fisher and Mujtaba (1992).

Once having solved for the joint level error 6., we can apply a position control
law to determine the robot joint torques, 7p. In our experiments, we use a simple

joint level PD control law.

5.4 Force Control Law

Similar to the position control, the Cartesian force/torque subspace of interest is given
by
i
fee =5 Ffe (5.26)

The relationship between Cartesian force/torque measurements and joint level torques
is given by

=, (5.27)

Therefore, the joint level torques errors are given by

Tos = d° FF,

tatid (5.28)
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With the joint-level torque errors, we use a simple PI Control Law to calculate the
joint control torques 7 from the error, ...

The control torques determined from the position and force control laws can be
summed, as depicted in Figure 5.5, and applied to the robot to achieve the final
hybrid control scheme.

The experimental Simulink implementation of this hybrid control law and integra-
tion with the output regulation controller and camera feedback system can be found

in Appendix C.
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Chapter 6

Simulation and Experimental

Results

This section highlights some of the simulation and experimental results that were
obtained using the control design simulation and experimental setups described in
Chapter 5. First, the control is applied to a homogeneous object using one manipula-
tion point, and one control point (Section 6.1). Next, a nonhomogeneous object is ma-
nipulated with one control point and two manipulation points (Section 6.2). Finally,
we implement the controller scheme to a nonhomogeneous object using two control
points and two manipulation points (Section 6.3). Each object and configuration is
tested first in simulation using the a nonlinear RKPM model, then in experiments
with an actual planar deformable object. Each simulation and experiment tests both

the full state linearization (if possible) and the reduced version.
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6.1 Homogeneous Object Set Point Regulation

The first object model used is a planar, square, homogeneous object broken up into a
9x9 grid of nodes as seen in Figure 6.1. The object is modeled using an RKPM mesh-
free model measuring 140 mm in both height and width. This model is constructed

to resemble the deformable object used in the experiments.

NN NN N XN

Figure 6.1: Planar deformable object discretized into a 9 x 9 grid.

The right edge of these nodes is fixed as an essential boundary, restricting the
right-most 9 nodes to be immobile. This leaves 72 free nodes with both x and y
displacements considered in the deformation model. The manipulator applies a force
at the center of the left edge. In the experimental setup, the force is applied using
a rod inserted into the object. To reflect this, we assume that that the force will be
distributed amongst the four manipulation point nodes shown in Figure 6.1. It is
important to note that these are not four independent manipulation points. A single

control point is used for the output located at the center node of the object.
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6.1.1 Full State

Reformulating the second order dynamics into a state space for a 72 node model
results in 288 states. The state vector, input vector, output vector, and measured

output vector are respectively

x € R™, u € R?, y € R?, Y, € R,

with corresponding state matrix, input matrix output matrix and measured output

matrix

A & RQBSX?SS B c R288X2 C = RQXQBS Cv c RIOXQSS
) ) ) ‘m )

with D and D,, set to zero.

6.1.1.1 Simulations

For this model, we first run a simulation using the full 288 states for feedback control.
The measured output we given noise characteristics of 0.01 mm? to simulated the noise
observed in camera measurements. The control signal was also given additive noise of
1 x 107° N? to replicate the filtered force measurements observed in the experimental
setup. The gain matrices are calculated from LQR optimal control and broken up
into K; € R¥*®8 K, € R?*2, and K3 € R?*? as described in Section 5.1.3. The LQR
parameters used were a = 10, 4 = 1000, v = 0.5.

The set-point reference signal used for this simulation is —3 mm in the x-direction
and 2mm in the y-direction. The output position, y(t), of the control point location

is calculated from the RKPM nonlinear model with the applied input force control
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signal. The output signal is shown in Figure 6.2. The dark blue and green solid lines
represents the displacement of the control point in the x-direction and the y-direction,
respectively. The lighter dashed blue and green lines represent the corresponding
desired set-point reference signal.

The control signal u(t) applied to the model is shown in Figure 6.7. The blue rep-
resents the force applied in the x-direction and the green the force in the y-direction.
Note that the input forces almost directly reach their steady-state value. This implies
that, at this amount of deformation, the linearization is a good approximate of the
actual nonlinear model used in simulation. Thus, the component of the force from
the feedforward gain matrix nearly achieves regulation. Some correction from the
internal model states of the controller, Ksz, can be seen compensating for the error
shown immediately after the step input.

For a visualization. the deformation of the object before and after the set-point
reference step is shown in Figure 6.4. The original undeformed object nodes are shown

as blue dots with the final object deformation as red circles.

6.1.1.2 Experiments

A homogeneous object is made from a single composition of super soft liquid plastic.
The same control law and gains are applied to the experimental setup. This object
is shown in the experimental setup in Figure 6.5.

For this experiment, the desired control point position was set to —3 mm in x,
followed by 3mm in v. The control point trajectory captured by the camera, shown
in Figure 6.6, clearly shows that the force applied by the robot manipulator are able to

achieve sub-millimeter positioning of the control point. Comparing the input control

68



M.A.Sc. Thesis - Richard Fanson McMaster - Electrical Engineering

c10? Output Position at p:: (¥4, ¥p)
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Displacement (m)

Time (s)

Figure 6.2: Simulated control point position output for full state estimation of the
homogeneous object.
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Figure 6.3: Simulated manipulation point input force for full state estimation of the
homogeneous object.
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Figure 6.4: Simulated deformation of the homogeneous object after control point
regulation with full state estimation.
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Figure 6.5: Experimental setup for the homogeneous planar object.
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force in Figure 6.7, alongside the position output, we can see significant differences
from the simulation. When the x-direction reference is commanded, there is slight
deviation in the y-position, as well. This could be attributed to an imperfection in the
camera to robot registration exact direction the robot applies the force on the object
as well as to modeling errors representing the interactions between the input force
in the x-direction and the output position in the y-direction. Another noteworthy
observation is decrease in the force command even in areas where the position is
relatively steady. This appears to be an example of relaxation in the object — a
nonlinear property not taken into account in the RKPM model. However, the robust

control law compensates for the discrepancy quite well.

3 Position Output at p1c (¥4, ¥p)
T T

Displacement (m)

50
Time (s)

Figure 6.6: Experimental control point position output for full state estimation of the
homogeneous object.

6.1.2 Model Reduction

In this section we apply model reduction to our homogeneous linear model to re-

duce the number of states in the state-space model while still capturing the dynamic
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Force Input at p:" (uy, uy)

Force (N)

Time (s)

Figure 6.7: Experimental manipulation point input force for full state estimation of
the homogeneous object.

behaviour of the object. Algorithm 4.1 described in Chapter 4 is used. For these
simulations and experiments we reduce the model from 288 states down to just 12.
The reduced model is compared to the old model in Figure 6.8 which shows the bode
plots of the full state and reduced state MIMO systems. Using only 12 states the re-
duced system mimics the original almost identically from DC-10 Hz and only deviates

slightly afterwards.

6.1.2.1 Simulations

The same simulation setup and parameters as the full state model are used. Also,
we apply the control force onto the exact same nonlinear model. Applying a refer-
ence of —5mm in x and —3mm in y this time, we see the output position converge
toward the target in Figure 6.9. The reduced model behaves quite similarly to the
full-state counterpart, as results are quite similar. The larger step seems to have

caused the linearization to deviate more drastically from the actual, indicated by the
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Bode Diagram
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Figure 6.8: Bode plots comparing the full state (blue) model to the reduced state
(green) homogeneous object model.
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error in the y-position immediately after the reference. Changes to «, 3, and 7 can
be made when determining the gain matrices from the LQR design to achieve faster
convergence at the expense of larger control signals, potential overshoot, etc. As is
evident in Figure 6.10, the force in the y-direction grows slowly after the initial feed-
forward component. The parameters can be altered to achieve the desired transient
response at the simulation stage, before applying to the practical experiment. The
final deformation is overlaid with the original object again in Figure 6.11.

o 1
. 10.3 Output Position at pg (y,. ¥p)
T

plx meas

Displacement (m)

Time (s)

Figure 6.9: Simulated control point position output for reduced state estimation of
the homogeneous object.

6.1.2.2 Experiments

The controller parameters determined from the reduced model simulation are used in
the experimental setup on the homogeneous phantom. The control point trajectory is
shown to converge to within sub-millimeter error of the reference again in Figure 6.12.
The force applied is shown in Figure 6.13. The experimental results when using the

reduced model are quite similar to the those of full-state controller. The reduced
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Figure 6.10: Simulated manipulation point input force for reduced state estimation
of the homogeneous object.
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Figure 6.11: Simulated deformation of the homogeneous object after control point
regulation with reduced state estimation.
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state linear model clearly shows the capability of regulating set-point trajectories for

our homogenous object.

<10 Output Position at pl (t;.,)

5 . . i . —

Displacement (m)

) i i H i i
0 20 40 60 80 100 120 140 160 180
Time (s)

Figure 6.12: Experimental control point position output for reduced state estimation
of the homogeneous object.

6.2 Nonhomogeneous Object Set Point Regulation

In this section we use the same control formulation but apply it to a more complex
model with inhomogeneities and two manipulation points. The object this time is
a circular object, approximately 140 mm in diameter, discretized into 205 nodes as
shown in Figure 6.14. The bottommost 3 nodes are defined as an essential boundary
in the model and thus fixed and not included in the states of the linearized model.
The object is composed of material with two different consistencies. The majority
of the object is relatively soft, with a stiffer rectangular region in center, defined by
the dashed box. The nonlinear RKPM model for this object was defined with all

positions in mm, and all forces in N.
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Figure 6.13: Experimental manipulation point input force for reduced state estimation
of the homogeneous object.

x L M A

Figure 6.14: Nonhomogeneous planar deformable object discretized into a 205 nodes.
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6.2.1 Full State

For 202 free nodes. the linear state space model will result in 808 states. With our
configuration, we have two manipulation points. with forces distributed over 3 nodes

each, and one control point which gives state-space vector and matrix dimensions

x € R3%, u € R*, y € R?, y,, € R,

A c RSOSXSOS B g RBOBX—'I C c R‘ZXS()S Cv c RHXQBB
y, 2 . y N m .

6.2.1.1 Simulations

For the full state simulation, we design the controller with all LQR cost function
parameters, a, 3, v, set to unity. The reference signal given is 1 mm in x and 3 mm in
y. The simulation output from the nonlinear model is shown in Figure 6.15. The x-
coordinate of the control point is shown in blue, the y-coordinate in green. The large
spike in the x-coordinate immediately after the step is a result of the nonlinear model
focusing on quasistatic representation of the object. The linearized model contained
significant damping and inertial dynamic components not represented in the RKPM
model. The results is a larger control force to overcome these dynamics that causes a
larger than expected deformation in the nonlinear model. However, even with such a
large discrepency between the linear and nonlinear model, the controller compensates
effectively to reach the desired trajectory.

The control signal for manipulation point p}, is shown in Figure 6.16 a) and for
manipulation point p?, in Figure 6.16 b). The initial and final deformation of the
nonhomogeneous object is shown in Figure 6.17 along with the measured control and

manipulation point trajectories., y,,.
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Figure 6.15: Simulated control point position output for full state estimation of the
nonhomogeneous object.
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Figure 6.16: Simulated manipulation point input force for full state estimation of the
nonhomogeneous object.
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6.2.1.2 Experiments

The controller could not be implemented on the experimental setup for the full state
model. The amount of memory required to estimate the full state model proved too
much for the Simulink real-time workshop. This reinforces the motivation for accurate

control laws formulated from reduced models.

6.2.2 Model Reduction

For the nonhomogeneous object, we apply model reduction as before, resulting in a
linear state space system with 40 states. The bode plot comparing the reduced model

to the full state nonhomogeneous model is shown in Figure 6.18.

6.2.2.1 Simulations

The same unity parameters were used for the o and 7 LQR parameters however
~v = 1000. This is to ensure that the control signal cannot not grow too much larger
than the approximated steady state values (u*) and therefore limiting the overshoot
that will show up in the quasi-static nonlinear RKPM model.

Again using reference 1 mm in x and 3mm in y, the results remain quite similar
to the full state simulation. The output position is shown in Figure 6.19 with ma-
nipulation point forces for p! and p?, shown in Figure 6.20(a) and Figure 6.20(b),

respectively.

6.2.2.2 Experiments

The nonhomogeneous object was positioned in the experimental setup as shown in

Figure 6.22. Again, the same reduced-state regulating controller was implemented
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Figure 6.18: Bode plots comparing the full state (blue) to the reduced state (green)
nonhomogeneous object models.
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Figure 6.19: Simulated control point position output for reduced state estimation of
the nonhomogeneous object.
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Figure 6.20: Simulated manipulation point input force for reduced state estimation
of the nonhomogeneous object.
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as in simulations and set-point reference steps applied. The recorded control point
position is shown in Figure 6.23 with the corresponding forces for manipulation points
1 and 2 shown in Figure 6.24(a) and Figure 6.24(b), respectively. The reference
signal in this experiment consists of several steps: first 1 mm in y, then 1 mm in x,
then up to 2mm before both returning to 0. The recorded control point position is
noticeably noisier in this experiment then previously because of the position of the
camera. Since two robotic manipulators were used an overhead view of the object was
more obstructed. The camera had to be moved farther away and at the side which
caused the y-direction in the object-space to be primarily corresponding to depth
in the camera which has the poorest resolution. The resulting affect is a step-like
chattering of the recorded control point position. However, it is evident from the
experimental results that the nonhomogeneous object, with two manipulation points

and one control point is still successfully regulated with set-point inputs.

Figure 6.22: Experimental setup with nonhomogeneous object phantom.
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Figure 6.23: Experimental control point position output for reduced state estimation

of the nonhomogeneous object.

Force (N)

06

Force Input at p), (uy. W)

Force Input at p2 (4. u))

——{, meas =T
——t, meas
iy oms

== f, cmd

Force (N)

50 100 150

200
Time (s)

(a) Manipulation Force 1

02 - -
(]

(b) Manipulation Force 2

Figure 6.24: Experimental manipulation point input forces for reduced state estima-
tion of the nonhomogeneous object.
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6.3 Two Control Point Nonhomogeneous Object
Set-point Regulation

In this section, we use the same nonhomogeneous object as before, but require reg-
ulation of an additional control point position. The object configuration with two
control point locations and two manipulation points is shown in Figure 6.25. The

actual object fitted with LEDs is shown in Figure 6.26.

s A

Figure 6.25: Nonhomogeneous, planar deformable object with two control points.
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Figure 6.26: Actual nonhomogeneous deformable object with two control points.

6.3.1 Full State

The linearized system remains the same as the previous model using one control
point. The only change occurs in the output matrices, C' and C,,, which are now of

dimensions 4 x 808 and 16 x 808, respectively.

6.3.1.1 Simulations

For these simulations the object is subjected to a larger deformation inthe x-direction
while remaining fixed in y. The set-point reference is 8 mm and O mm in x and y for
control point p! and 10mm and 0 mm for control point p?. We tune the controller
using LQR parameters to a = 0.01, § = 0.01, v = 100 to give a slightly slower
integral action and still keep the control from growing too large from the steady-state
value. The resulting simulation control point positions and input forces are shown

in Figure 6.27, and Figure 6.28, respectively. The object deformation is shown in
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Figure 6.29.
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Figure 6.27: Simulated outputs for full state estimation of the nonhomogeneous object
with two control points.

Again, we see significant overshoot stemming from the lack of proper inertial
and viscous characteristics in our nonlinear model implementation. However the
system remains stabilized and converges to the desired set-point postitions even under

extreme deformation with multiple control and manipulation points.

6.3.1.2 Experiments

As before, the state dimension for the full model is too large to perform an experi-
mental study with the robotic manipulators. The feasibility of the regulation control

in experiments is demonstrated using the reduced model in the next sections.

6.3.2 Reduced State

As in the single control point case, the reduced-state model is represented again by

40 states. The comparison of full-state linear model to reduced-state system is shown
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Figure 6.28: Simulated manipulation point input forces for full state estimation of
the nonhomogeneous object with two control points.
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Figure 6.29: Simulated deformation of the nonhomogeneous object after control point

regulation with full state estimation.
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the bode plots of the MIMO system in Figure 6.30 with 4-inputs and 4-output signals.

6.3.2.1 Simulations

The simulation results for the reduced model are almost identical to the force inputs
and position outputs to the full-state linear model. This implies the 40 state rep-
resentation for this model is just as suitable as the 808-state model for regulating
two control points. The control point positions in Figure 6.31, and input forces in
Figure 6.32, as well as object deformation in Figure 6.33 are nearly identical to their

full-state counterparts.

6.3.2.2 Experiments

The reduced state control gains of the simulation were implemented on the robotic
experimental setup. For these experiments the same, large-deformation reference
signals are applied of (z,y) = (8,0) for control point p! and (z,y) = (10,0) for p?.
The output position results are shown in Figure 6.34 and control signals in Figure 6.35.
The results are promising. Immediately after the step, the feedforward contribution
brings the output towards the desired targets. Due to nonlinearities and modeling
inaccuracies, the initial feedforward compensation deviates significantly from the set-
point values. However, the internal model of the regulating controller simultaneously

brings both the control points to the desired values.
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Bode Diagram

Figure 6.30: Bode plots comparing the full state (blue) to the reduced state (green)
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Figure 6.31: Simulated outputs for reduced state estimation of the nonhomogeneous
object with two control points.
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Figure 6.32: Simulated manipulation point input forces for reduced state estimation
of the nonhomogeneous object with two control points.
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Figure 6.33: Simulated deformation of the 2 control point nonhomogeneous object
with reduced state estimation.
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Figure 6.34: Experimental outputs for reduced state estimation of the nonhomoge-

neous object with two control points.
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Figure 6.35: Experimental manipulation point input forces for reduced state estima-
tion of the nonhomogeneous object with two control points.

6.4 Summary

These simulation and experimental results represent various configurations of objects
together with various controller performance parameters. The objects and configura-

tions tested include:

e homogeneous planar objects

nonhomogeneous planar objects

one-control point, one-manipulation point configuration

one-control point, two-manipulation point configuration

two-control point, two-manipulation point configuration

The results show the potential for stable and robust convergence with all configura-
tions under both small and large deformations while showing significant freedom for

a designer to set controller performance.
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Chapter 7

Conclusions and Discussion

This thesis proposes a new approach to designing the control law that solves the indi-
rect simultaneous positioning problem. This approach is based upon the linearization
of an accurate object model representing the second-order dynamics of the physical
object. From the linearization, a state-space model of the object is obtained which is
then controlled using robust output regulation theory. This controller forces conver-
gence of the output variables to their desired references in the presence of uncertainty
and deviation of the plant model parameters from their nominal values. Due to the
inherent state-feedback form of this controller, and the often large number of nodes
involved in discretization of accurate object models, the state vector can become sig-
nificantly large and unrealistic to implement in real-time experimental procedures.
Therefore, model reduction techniques are investigated in this thesis to retain accu-
rate representations of the object dynamics while reducing the size of the state vector
needed for feedback. The control framework is verified in both simulations using

MATLAB’s Simulink®, and experiments using robot manipulators.
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7.1 Discussion

Some previous reported results use control schemes that rely on a linearization be-
tween the differential motions of the manipulation and control points, namely the
Jacobian. A benefit of this formulation is that it allows the input variable to be
the position of the manipulation points. This may eliminate the need for additional
sensors such as the force/torque sensors in the experimental setup of this thesis, and
reduce overall costs. However, these controllers neglect information about the inertial
and viscous effects of the object’s motion. The benefits of using a dynamic model for
the basis of the control law include more flexibility in designing for desired transient
responses.

A controller that is based on second order dynamics allows the freedom of chang-
ing controller parameters to obtain desired transient response characteristics without
compromising the stability of the system. Additionally, using state-feedback for the
stabilizing portion of the control allows for a more systematic approach dealing with
objects that may have complicated compositions and behaviour. Designs focused on
simply PID control gains on error signals may not be able to stabilize objects with
certain configurations and boundary conditions.

An important note to the reader is that the control scheme presented in this thesis
is robust in a classical output regulation definition, such as defined in the work of
Francis (1977) and Huang (2004). The controller is robust by construction to uncer-
tainty and nominal plant value deviation within some neighbourhood of parameter
variation. The control remains stabilizing and regulating so long as the controller
gains defined for the nominal plant still stabilize the closed loop system, and that the

rank condition (3.33) remains valid, given the plant variation. Controllers exist that
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use a priori knowledge of the entire range of plant parameter variations to guarantee
robustness within that range, but require a different approach, such as H., control,
and are beyond the scope of this thesis.

The experimental procedures presented in this thesis demonstrate the feasibil-
ity of this control architecture in practice. Depending on the setup, there may be
other circumstances to consider. For instance, the position feedback of the control
point used in this thesis was based on a stereoscopic camera and infrared filters and
LEDs. Using other imaging modalities, such as ultrasound or MRI, may require more
complicated procedures to properly complete the coordinate registration and image
segmentation to determine the position of any measured output points. Also, since
the control scheme is based on the dynamic characteristics of the object, there is
an inherent lower bound on the sampling rate of which the output deformation is

fed-back in order to facilitate the controller in real-time.

7.2 Further Development

Further research could include extending this control approach beyond planar objects
to the 3D case. Additionally, the branch of work could be expanded to include even
more complicated objects with holes and more inhomogeneities, as well as objects
without a fixed essential boundary. In the future, there would also be a more thorough
analysis of the amount of deformation and uncertainty allowed in the model while
still ensuring stability and robustness to set-point reference trajectories.
Additionally, we could explore different tasks such as needle insertion. This prob-
lem would be quite similar in formulation but involve the convergence of the control

point to a line, namely the needle path, rather than to a fixed point. This would
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likely also involve incorporating a more complicated object model that accounts the
change in object characteristics due to the needle’s insertion.

The area of model reduction provided a means for reducing the state vector re-
quired in the controller synthesis while still capturing the characteristics of the object.
However, there is room for a more thorough investigation into the optimal order of
the reduced model for a given object. A more systematic choice the the number of
matched moments in the reduced model would be beneficial in the controller design
process. Also, there would be value in an comparing a controller that first reduces
the model for the basis of a “full-state” controller, as presented in this thesis, and one
that determines optimal projection equations for reduced order compensation. The
key difference being when during controller design a reduction procedure occurs.

Another area of focus could involve coupling the now separate control aspects of
the object controller and the robot hybrid controller. This would involve including
the robot dynamics into the interaction with the object and treating the inputs to
the system as the manipulator joint torques, rather than the forces on the object
manipulation points.

Finally, the results show successful manipulation and and object with more inputs
than outputs, which implies there is no unique solution to the required input forces
that achieve the desired output positions. However, there was no exploration into
the benefits of the additional degrees of freedom in the system and how to design the
system to converge to one solution over another. Future work could involve similar
experimental setups that use this extra degree of freedom to incorporate more complex

path planning or to impose some constraints on the manipulation points.
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Appendix A

Model Parameters Optimization

The properties of the hyper-elastic plastic materials were determined by experimen-
tally deforming the object with a robot manipulator. Both the deformation of the
object was recorded as well as the interacting forces applied by the manipulator.
Figure A.1 shows a sample of material being deformed with certain point locations
being recorded by a stereo vision camera. Simulations were then performed while
tuning object parameters until the simulated deformation matched the experimental

deformation. For these objects, the second Piola-Kirchhoff stress is defined as
S(E) = Atr(E) + 2uF (A.1)

where E is the Lagrangian Green strain and A and j are the first and second Lamé
parameters. This is derived from the partial derivative of the strain-energy density
function

’ A . ;
W(E) = 5 [tr(E)]* + ptr(E?). (A.2)
The parameter identification comprised two steps. In the first step, a grid search
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Figure A.1: Deformed object sample with markers to track deformation.

was used to identify a set of parameters that matches approximately the object. Then,
an optimization routine was started from that point.

The cost function that is used for identifying A and p is defined based on the
difference between the recorded position of the control points and the positions of
them in simulation. This cost function should be minimized such that the best values
for A and p that match the deformation of the simulated object and the deformation

recorded from the experiment are found. Therefore this cost function is defined as

FOp) = Z i — a2 (A.3)

where p;’s are the positions of the control points on the object, ¢;’s are the positions
of the control points in simulation, and n is the number of control points. The surface
plot of the values of this cost function as a function of A and p is shown in Figure A.2.

Using the above mentioned algorithm for identifying the object’s parameters leads
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Figure A.2: Surface plot of the error cost as a function of the parametres ;o and A.

to values of 0.189151 and 0.147688 for p and A, respectively. Figure A.3 shows the
simulation of the deformation with both the simulated control points positions and
the recorded control points positions for the object with these parameters. FError
histogram for the simulation is also shown in Figure A.4. The mean error of the
simulation was 0.80 mm with standard deviation of 0.46 mm.

For the nonhomogeneous objects, another solution using a plastic softening addi-
tive was used to create another sample with distinct material characteristics. The sec-
ond, softer material deformation was recorded experimentally and parameter-matched
using the same process. The cost function for the Lamé parameters of this material
is shown in Figure A.5. The optimal parameters are found to be p = 0.039 and
A = 0.043. The simulated marker point deformation is compared to the experimental

recordings in Figure A.6 with the error histogram shown in Figure A.7.
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Figure A.3: Object deformation showing both the simulated control point positions
and the recorded control point positions.
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Figure A.4: Error histogram of the simulated vs recorded marker point deformation.
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Figure A.5: Surface plot of the softer material error cost function.
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Figure A.6: Object deformation showing both the simulated vs recorded control point
positions of the softer material.
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Figure A.7: Error histogram of the softer material marker point deformation.
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Appendix B

Image Acquisition and

Camera-Robot Registration

For all experimental tests, the position of the control point is tracked using the
Bumblebee®2 Stereo Vision CCD camera from Point Grey Research. The camera
captures two images at a resolution of 800 x 600 and transferred to a computer via
IEEE-1394 (Firewire). We add to the camera two infrared filter lenses from Newport
Corporation with a cutoff frequency of 780 nm (part no. FSR-RG780), as seen in Fig-
ure B.1. Using the filters and infrared LEDs as the markers allows easier segmentation
of the points of interest in the cameras field of view.

Custom software was developed using the Triclops SDK from Point Grey Research
to process the images acquired by the camera and determine the 3D coordinates of
the control point on the object. The general outline of the software algorithm to
capture the control point deformation is given in Algorithm B.1.

The camera is initialized so that, given the ambient setting of the experiment,

only the infrared LEDs, are visible in the camera image. For our experiments, this is
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Algorithm B.1 Image Acquisition and Registration

initialize camera
while camera output required do
read left and right camera images
binarize both images:
for (each pixel in image) do
if pizel > threshold then

pizel = 1
else
pixel =0
end if
end for

segment both images into marker blobs
convert matching blobs into 3D points
sort 3D points into registration and control points
if first image acquired then
compute registration from 3 reg. points
end if
convert 3D points from camera coords to robot coords
for first 20 images do
average the control points,
set as initial position
end for
compute control point displacement from initial positon
send displacement over UDP to simulink
end while
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Figure B.1: Bumblebee®2 Stereo Vision camera with infrared filters.

done by manually adjusting the camera settings such as aperature time, exposure and
gain. This reduces any chance of false positives during segmentation and recognizing
an artifact as an LED marker.

The left and right camera images are acquired and stored as 800 x 600 arrays
of 8-bit greyscale values. Both images then binarized so that only pixels above a
certain value are retain and everything else filtered out. For our experiments, we use
a threshold value of 225. Any pixel above this value is taken to be a part of our
marker and set to true.

Next the images are segmented using a blob finding algorithm that creates a linked
list of pixel groupings. There will be one blob for every registration LED and one
for every control point in each image. These blob lists are then sorted so that the
the blobs for the right image can be matched to the corresponding blobs of the left

image.
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Figure B.2: Stereo vision geometry showing how a single point represented in the
separate camera images.

Once two lists of blobs are computer in matching order, we use the centroids of a
matching pair to compute a single 3D coordinate. We do this using the SDK function
that returns an x,y,z-coordinate from the disparity (difference in column value) of the
location in each image that should represent the same physical point, as illustrated
in Figure B.2. Note, that because the camera lenses are aligned vertically, the row
direction values should be the same in both images. The disparity can be converted to
a 3-dimensional x,y,z-coordinate using what is called epipolar geometry. The tricplops
SDK includes a function uses the camera baseline, b and focal-length, f to return a
3D point when given a disparity. This conversion is made for every pair of matching
blobs in the images. In our experiments, we will get three distinct 3D points for the
registration markers, and one point for every control point being tracked.

Once all points are given in 3D coordinates in camera the camera frame, the three
point recognized as the registration LEDs are used in a to determine the rotation
between the robot frame and the camera frame. This registration only needs to be

performed once, and is completed upon receiving the first pair of images. Refer to
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Figure B.3: Ilustration differentiating the robot frame, the camera frame, and the
marker frame.

Figure B.3 for an illustration of the different coordinate frames required for registra-
tion. Note, that since all our experiments focus on displacements, we only need to
solve for the rotation that relates the orientation of the camera coordinate system to
the robot coordinate system. Otherwise, we would have to acknowledge a translation
between the coordinate frames, as well.

First, from the three points captured in the camera frame, we can create an
intermediate orthogonal coordinate frame labeled the marker frame. Let the three
registration points captured in the camera frame be plc, pg and pg. Create a vector

that will represent the marker space x-axis as seen by the camera; in this case ¢ =
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p§ — pS. Create a second vector that we assume is in the x,y-plane of the marker

c C

space: v¢ = p{ — p§. Note that we cannot assume this to be exactly the y-axis
because it may not be orthogonal to the x-axis we chose, as shown in the figure. We

can however, create a third vector, orthogonal to this plane to use for the z-axis:

C C

z¢ = ¢ x v“. Now, find the orthogonal y-axis as y© = 2z x . The three axis of

our intermediate marker space are now given in camera frame coordinates as

C c C
', €z C Y c =

L =t Y == P T ETT
[ ]]2 [yl |2
The rotation that relates any point in the marker space to the camera space is given
by

RS = {mc yC ZC} .

In a very similar manner, we construct a rotation that relates the orientation of
the robot coordinate frame to the marker coordinate frame. The registration LED
points, need to be known in the robot coordinate system. This is commonly done
by touching the robot end-effector to the three points of interest and recording their
locations. In our case, we use the a grid in the workspace to place the LEDs a known
distance apart. That is, pZ is placed in the workspace and considered to be the origin,
pltis placed an inch in the robot’s negative x-direction, and p& an inch in the negative
y-direction. The only difference between this and touching the points is excluding
the translation that relates the robot end-effector frame origin to p4. However, as
mentioned above, we are working with displacements from original positions and thus
the translational aspect is not needed.

We create an orthogonal frame of the registration markers exactly as before, this
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time as seen in the robot coordinate frame perspective: xft, y#, 2. The rotation

relating the marker frame to the robot frame is given by

-

Now we can solve for the relation between the robot and camera frames from
R{ = R%}R 11\?1T~

The remaining 3D point displacements representing the control points are sent
via UDP to our Simulink robot controller. Before sending any data or moving the
manipulators, the control point location in the camera coordinate system is averaged
over the first 20 images. This location is used as the original, undeformed location
for the ith control point, péC(O). After establishing this initial position, the following
captured control point locations in the camera frame, p©, are converted to displace-
ments simply from the difference between the current location and the initial position,
péc(t) =p©— pﬁ,C(O). This displacement is still in the camera coordinate system and
therefore is converted to the robot coordinate system with pi(t) = RE pic(t). This
displacement is sent over UDP to the Simulink simulation as the control point dis-
placement. Since all experiments occur in the robot’s x,y-plane, the z-displacement
never changes, and the x and y coordinates of each control point are extracted and

used as the plant output y for our output regulation controller.



Appendix C

Experimental Simulink

Implementation

The camera-based position feedback, hybrid position/force control, and output reg-
ulation control schemes are all integrated using MATLAB’s Simulink® and uses
QUARC® by Quansar to control the manipulators with the MATLAB Real Time
Workshop®. The entire Simulink system is shown in Figure C.1. The main sub-
systems of this setup include the camera output feedback subsystem (shown in light
blue), the robot hybrid control subsystem (shown in orange), and the output regula-
tion controller (shown in teal).

The robot hybrid control subsystem is shown in Figure C.2. The contents of this
subsystem are described in Section 5.2.2. The Cartesian position error is projected
into the subspace that includes the z, pitch and roll components using a selector
matrix and converted to a joint level error. A simple PD controller converts this error
to the first half of the control signal for the robot joints. Simultaneously, the force

feedback from the end-effector is projected onto the x,y-plane subspace, converted
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to a joint level torque error and a simple PI controller converts this to the second
half of the control signal for the manipulators. The positional commands keep the
manipulator in the x,y-plane of the deformable object. The force commands are
determined from the output regulation controller subsystem.

The camera feedback subsystem is shown in Figure C.3. The actual control
point position is calculated from the an algorithm running simultaneously and im-
plemented in C++4. It uses a stereo vision camera and the image registration de-
scribed in Appendix B. This control point position calculated in this algorithm is
received in Simulink® via the stream server block and UDP communication. The x.y-
coordinate(s) of the control point(s) are passed to the output regulation controller
subsystem as the output vector y.

The output regulation subsystem is shown in Figure C.4. The feedback from the
camera and the x,y-displacement of the robot end-effector are both calibrated to be
zero when the object is in the undeformed state. The deformation of control points
and manipulation points from the original position are concatenated and passed to
the output regulation controller as the output measurement ¥y,,. The controller and
estimator determine the appropriate control force the robots need to apply to the
manipulation point to bring the control points to there desired location, as described

i o.1.
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Figure C.1: Simulink block diagram used for experiments.
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