Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9087
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKirubarajan,en_US
dc.contributor.authorLi, Kaibingen_US
dc.date.accessioned2014-06-18T16:45:31Z-
dc.date.available2014-06-18T16:45:31Z-
dc.date.created2011-05-26en_US
dc.date.issued2010en_US
dc.identifier.otheropendissertations/4241en_US
dc.identifier.other5259en_US
dc.identifier.other2033064en_US
dc.identifier.urihttp://hdl.handle.net/11375/9087-
dc.description.abstract<p>In many radar tracking systems ·with a certain pulse-repetition frequency (PRF), Doppler (or range rate) measurements are available in addition to position measurements. The extra range rate information Doppler measurements provide is able to improve the tracking performance. However, a fundamental problem associated with Pulse-Doppler radars is, especially at low PRFs, range rate ambiguity. This is because Doppler shifts in the frequency spectrum are aliased by a difference of an integer times of PRF. In this case, the observed Doppler measurement shifts from the true range rate by an unknown difference.</p> <p>In previous works, algorithms to eliminate the Doppler ambiguity based on the Chinese Remainder Theorem have been proposed for radars with multiple PRFs. Time- Frequency Analysis (TFA) using Fast Fourier Transform (FFT) can reduce the ambiguity in the frequency domain.</p> <p>In this paper, a new approach for multitarget detection and tracking with Doppler ambiguity is presented. Ambiguous Doppler measurements in addition to the position measurements are directly used in data association and tracking. To solve the Doppler ambiguity for single target tracking, three methods are proposed based on UKF, MHT and PDA, respectively. In addition, modifications to Multiple Hypothesis Tracking (MHT) and Joint Integrated Probabilistic Data Association (JIPDA) algorithms to resolve Doppler ambiguity in multitarget tracking are considered. Simulation results are preformed to demonstrate the new algorithms with tracking results analysis.</p>en_US
dc.subjectElectrical and Computer Engineeringen_US
dc.subjectElectrical and Computer Engineeringen_US
dc.titleMultitarget Tracking with Doppler Ambiguityen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
16.37 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue