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Abstract

In many radar tracking systems ·with a certain pulse-repetition frequency (PRF),

Doppler (or range rate) measurements are available in addition to position measure­

ments. The extra range rate information Doppler measurements provide is able to

improve the tracking performance. However, a fundamental problem associated with

Pulse-Doppler radars is, especially at low PRFs, range rate ambiguity. This is be­

cause Doppler shifts in the frequency spectrum are aliased by a difference of an integer

times of PRF. In this case, the observed Doppler measurement shifts from the true

range rate by an unknown difference.

In previous works, algorithms to eliminate the Doppler ambiguity based on the

Chinese Remainder Theorem have been proposed for radars with multiple PRFs.

Time-Frequency Analysis (TFA) using Fast Fourier Transform (FFT) can reduce the

ambiguity in the frequency domain.

In this paper, a new approach for multitarget detection and tracking with Doppler

ambiguity is presented. Ambiguous Doppler measurements in addition to the position

measurements are directly used in data association and tracking. To solve the Doppler

ambiguity for single target tracking, three methods are proposed based on KF, "\IHT

and PDA, respectively. In addition, modifications to }'/Iultiple Hypothesis Tracking

(MHT) and Joint Integrated Probabilistic Data Association (JIPDA) algorithms to

lV



resolve Doppler ambiguity in multitarget tracking are considered. Simulation results

are preformed to demonstrate the ne\\ algorithms with tracking results analysis.
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Chapter 1

INTRODUCTION

In many radar or sonar tracking systems, the state of interest typically includes tar­

get position and velocity components. In addition to position measurements, target

Doppler or range rate measurement may provide further information about a tar­

gets second order kinematic state. where the Doppler effect is used to determine

the relative velocity of objects or whether the target is stationary or moving (Koch,

2002). Pulses of RF energy returning from the target are processed to measure the

frequency shift between carrier cycles in each pulse and the original transmitted fre­

quency. Therefore, the Doppler measurement can be incorporated into the tracker

to enhance tracking performance. On the other hand, in a coherent pulsed Doppler

radar, ambiguity can occur in both range and radial velocity measurements (Al­

abaster et al., 2003) (Trunk and Brockett, 1993). The ambiguity domain remains

constant for a fixed carrier frequency. As the pulse repetition frequency (PRF) in­

creases the ambiguity moves from radial velocity to range measurements. In general,

a compromise is made between high PRF and low PRF, both of which can cause side

effects in range and range rate, respectively (Zhou et al.. 2006). The medium PRF
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radar system allow all-round measurements of both range and Doppler of targets in

high clutter environment to be made (Hughes and Lewis 2009). Such radars use

waveforms that are ambiguous in range, Doppler or both. In most case, the main

purpose of the surveillance radars is the observation of the targets in the area of in­

terest. Therefore, low PRF is chosen to make an accurate range measurement, but it

leads to the ambiguity in the range rate. In this paper, only the Doppler ambiguity

is considered.

In previous works, several methods have been proposed to introduce the Doppler

measurement into the tracking step which aims to improve the estimation perfor­

mance. In (Smith 2008), the said improvement, for both the position and velocity

estimation, was illustrated by analysis of the fundamental lower bound of the es­

timation error covariance (Zhang et al., 2005) (Tharmarasa et al., 2007), \\ hich

indicated that the lower bound decreases proportional to the standard deviation of

the error in the Doppler component. In Niu et al. (2002), the range rate information

is extracted from the radar wave form in a linearly frequency-modulated (LFM) pulse

radar system, and the corroboration in the new range rate measurements offers an

good tracking performance. In (Yeom et al., 2004) (Wang et al., 2009) (V/ang et al.,

2007), instead of the traditional "two-point" track initialization the "one poin" track

initialization has been presented, where the Doppler measurements are incorporated

here to reduce the velocity uncertainty for the initiated track states. The proposed

track initiation method is capable of reducing the computational requirements of the

system compared with the classical on . In (Tobias and Lanterman. 2005). the PHD

particle filter handles ghost target.s and it has improved tracking performance when

incorporating Doppler measurements along with range measurements. Nleanwhile,

2
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the negative correlation between the measurement error of range and that of Doppler

has been proved in the case of commonly used upsweep chirp or linear FM waveform

(Bar-Shalom 2000). In (\i\ ang et at., 2009) (\iVang et at.. 2007), the use of the

Doppler measurement for PDA in multitarget tracking has been addressed without

the use of nonlinear filter. The position and Doppler measurements are processed

with independent linear filters, both of which contribute to the data association of

PDA. However, the complexity of the target maneuvers and the geometry of the radar

environment (Blackman, 1986), either polar or spherical system, indicate that the

tracking system design needs to employ nonlinear filtering techniques. Using mea­

surements of Doppler information directly in target state estimation also leads to

a nonlinear filter. The simplest and oldest nonlinear filtering technique, Extended

Kalman Filter (EKF), has been commonly used in the previous works (Jazwinski,

1970) (Bar-Shalom et al., 2001). However, the EKF suffers a number of serious

limitations (Julier and Uhlmann, 2004) such as, linearized transformations are only

reliable if the error propagation can be well approximated linearly; the calculating

Jacobian matrices could be a very difficult and error-prone process; or even worse,

the Jacobian matrix does not exist (Tugnait, 1981), which holds for the model of the

ambiguous Doppler measurement. Therefore EKF often results in major errors in the

estimated statistics of the posterior distributions of the states. Unlike the EKF, the

unscented Kalman filter (UKF), which is first applied in (Julier and Uhlmann, 2004)

(\iVan and Van Del' Menve, 2000), uses the true nonlinear model for state propagation

or observation rather than a linearly approximation. \iVhen propagated by the true

non-linear model. the posterior mean and covariance can be accurately estimated.

while errors only exist in the third or higher order.

3
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On the other hand, above-mentioned works only incorporate the Doppler mea­

surement without any ambiguity into tracking. The fundamental problem associated

with Pulse-Doppler radars, especially at low PRFs, is range rate ambiguity. This is

because Doppler shifts in the frequency spectrum will be aliased by a difference of

an integer times of PRF. In this case, the observed Doppler measurement differs by

nd x v f from the true range rate of the target, where nd is the unknown ambiguity

order and vf is the first blind velocity, which depends on the PRF. To solve this

ambiguity problem, multiple PRFs are often used (Hughes and Lewis, 2009) (Ho­

vanessian, 1976), so that the ambiguity could be solved by the Chinese Remainder

Theorem with the appropriate selection of PRF. However, the task of solving am­

biguity would be time and resource consuming. On the other hand, various works

have presented to solve this problem in frequenc,) domain (Xia, 1999) (Ferrari et ai.,

1997). The folded frequency of the target signal can be estimated by averaging the

folded frequency estimates for each PRF. And the ambiguity order is the integer part

of the Doppler frequency, which is estimated by using the quasi-maximum likelihood

criterion, with a fast implementation based on the Fast Fourier Transform (FFT).

f\Iethods in (Koch 2002) (Zhou et ai., 2006) solve the Doppler ambiguity by analyz­

ing the waveform of the receiving radar signal. However, all the proposed methods to

solve the ambiguity rely on the choice of the particular values of the PRFs, multiple

measurements for a singe target have to be processed. And all the abo\ e mentioned

methods are implemented independently from the tracking or data association step,

which yields to extra computation load to the tracking system.

In this paper, based on UKF, multiple hypothesis tracking (IvIHT) and probabilis­

tic data association (PDA), three methods of solving ambiguity in the tracking level

4
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have been developed, theoretically independent of the choice of particular PRF. The

UKF is modified to handle the ambiguous Doppler measurement. Although with limi­

tations of maneuverability and measurement accuracy, the modified UKF can achieve

better tracking performance in general. On the other hand, MHT and PDA, both of

which used to solve the measurement-to-track association problem, are modified here

to achieve optimal or suboptimal solution for the Doppler ambiguity problem. The

IvIHT algorithm is brought out (Reid. 1979) to deal the measurement-to-track asso­

ciation in tracking multiple targets. The Key idea of ~/IHT is exhaustively searching

all possible association events from time 1 to time k and find the one with greatest

probability. Instead of measurement-to-track association ambiguity, the yIHT algo­

rithm is applied to solve the Doppler ambiguity here. For the multitarget tracking,

based on the original MHT, sub-hypotheses are generated according to the Doppler

ambiguity for each pair of track-measurement assignment. The exponential increas­

ing number of hypotheses would results in large computational loads. Meanwhile the

suboptimal algorithm of PDA (Bar-Shalom and Tse, 1975), is used here for Doppler

ambiguity find the optimal solution for the current time. Based on the joint PDA

(Roecker, 1994) frame, the joint integrated probabilistic data association (JIPDA)

filter (/Iusicki and Evans, 2004), which concerns cluttered environment and track

maintenance, also has been modified here to handle multitarget tracking.

The rest part of this paper is organized as follows: Section II builds on the state

evolvement and measurement model, and reviews the UKF for this nonlinear systems.

In section III. the Doppler ambiguity for a single target tracking problem is solved

in different methods. and expended to the multitarget case in section IV. Section V

is devoted to simulations evaluating the method performance in various simulation

5
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scenarIOs. Summary and conclusions are provided in section VI.
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Chapter 2

OVERVIEW OF TARGET

TRACKING

2.1 Filtering Algorithms

In order to analyze and make inference about a dynamic system, two models are

required. First, the system model, which describing the evolution of the state with

time, is

(2.1 )

and second the measurement model which express the relation between the state and

the noisy measurement is

(2.2)

where Xk is the state of the target and Zk is the measurement vector at time k, and

Vk WI.' are the Gaussian process noise and measurement noise, respectively. vVe will

assume that these models are available. The probabilistic sate space formulation and

7
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the requirement for the updating of information on receipt of new measurements are

ideally suited for the Bayesian approach. This provides a rigorous general framework

for dynamic state estimation problems.

In the Bayesian approach to dynamic state estimation, one attempts to construc­

tion the posterior probability density function of the state based on all available

information, including the prior information and all received measurement over time.

Since this PDF embodies all available statistical information it can be said to be the

optimal solution of the estimation problem. 1\1 principle, an optimal estimate of the

state may be obtain form the PDF by maximum likelihood U·/IL) estimation. A re­

cursive filtering approach means that the received data can be processed sequentially

rather than as a batch so that it is not necessary to store the completed data set

nor to reprocess existing data if a new measurement becomes available. This filter is

composed of two steps: prediction and udpated. The prediction step used the system

model to predict the state PDF to the next time scan. Since the state is usually

subject to unknovvn disturbance, prediction generally translates, deforms or spreads

the state PDF.

Assume that the required PDF P(Xk\Zk) at time k, where Zk = [Zl, Z2, ... , Zk]. The

prediction step involves using the the system model to obtain the prior PFD fo the

state at time k + 1 and given by

(2.3)

The update operation uses the latest measurement to modify the prediction PFD.

At time k, a measurement Zk becomes available and will be used to update the prior

8
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(2.4)

The above likelihood function is defined by the measurement model.

The above recursive propagation of the posterior density is only a theoretical

solution by not practical. However, under certain assumptions, we can solve the the

problem by Kalman Filter.

2.2 Kalman Filter

The Kalman filter assumes that the state and measurement model are linear and the

initial state error and all noises, both process and measurement noises are Gaussian

and hence, parameterized by a mean and covariance. Under the above assumptions,

if p(xkIZk) is Gaussian, it can be proved that P(Xk+lIZk+1) is also Gaussian.

Then, the state and measurement equations are given by

(2.5)

(2.6)

If Fk and Hk are know matrices, Vk rv N(O, QJ;) and Wk rv N(o, Rk), the Kalman

filter algorithm can then be viewed as the following recursive form:

p(xkI Zk ) A((Xk; xkIk' Pk1k ) (2.7)

P(Xk+lI Zk ) N(Xk+l; Xk+llk, Pk+ll k) (2.8)

P(Xk+ljZk+l) N(Xk+l; Xk+llk+l. Pk llk+l) (2.9)

9
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with

Xk+llk FkXklk (2.10)

Pk+11k FkPk1kF! + Qk (2.11)

Xk+llk+l Xk+llk + Kk+1(Zk+l - Hk+1Xk+lII,J (2.12)

Pk+1l k Pk+1lk - Kk+lHk+lPk+llk (2.13)

Hk+lPk+llkH!+l + Rk+1

Pk+llkH!+l Sk~l

(2.14)

(2.15)

In the above, N(x; x, P) means a Gaussian density with argument X, mean x and

covariance P.

This is the optimal solution to the tracking problem under the above assumption.

THe implication is that no algorithm can do better than a Kalman filter in this linear

Gaussian environment.

In many situation of interest the assumption made above do not hold, where linear

approximation or other methods are required to solve the problem.

2.3 Extended Kalman Filter

If the functions in (2.1) and (2.2) are nonlinear. then a local linearization of the

equations could be a sufficient description of the nonlinearity. Local linearization of

10
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(2.16)

(2.17)

The EKF is based on the assumption that p(Xk IZk) is approximation by a Gaus-

sian. Then all the equation of the Kalman filter can be used with this approximation

and the linearized function.

2.4 Unscented Kalman Filter

In general case, the state propagation and measurement models are nonlinear. \t\ ith

the explicit expression of the measurement and the Gaussian noise assumption, the

UKF is able to handle the nonlinear tracking problem appropriately (Julier and

Uhlmann, 2004). The most commonly used nonlinear filter, EKF only uses the first

order terms of the Taylor series expansion of the nonlinear functions, and as a result

often comes with major errors in the estimated statistics of the posterior distributions

of the states, especially in the highly nonlinear or even non-differentiable case. Unlike

the EKF, the UKF uses true models rather than linearly approximate the nonlinear

process and observation model. However, the UKF is restricted to the Gaussian

case and is specified by using a minimal set of deterministically chosen samples,

'which can completely capture the true mean and covariance of the Gaussian random

variable. Even when propagated by the true nonlinear model, the posterior mean and

covariance can still be accurately estimated, while errors only exist in the third or

higher order. To implement UKF, the unscented transformation is applied in (Julier

11
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and Uhlmann, 2004) ("Wan and Van Der I\lerwe, 2000).

Assume state Xk-I has mean Xk-I and covariance P.'l:' To calculate the first two

moments of Xk using the UT, the following procedure is undertaken. First, a set of

2nx + 1 \veighted samples 5i = {TllIi , Xd, called sigma points are generated where

nx is the dimension of Xk and i is the index of such points. Those sigma points are

deterministically chosen so that they completely capture the true mean and covariance

of the prior random variable x. However, within the system of Gaussian process noise

v and measurement noise w, the state random variable is redefined as xa = [x; v; w].

The sigma point selection scheme is applied to this new state random variable to

calculate the corresponding sigma matrix, X a (the set of all sIgma points). The

complete UKF algorithm is given as follows:

1. Initialization: at time k = 0

x

Po

X
~,a

. 0

2. For k E {I, .... ,oo}

E[xo]

E[(xo - x)(xo - xf]

Po 0 0

o Q 0

o 0 R

12
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• Calculate sigma points
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• Prediction

(2.22)

XX 1(XL1' X~_l) (2.23)klk-l
2na

xklk-1 L H/iXttlt-1 (2.24)
i=O
2na

Pt1t - 1 L lVdXi~klk_1 - xklk-d[Xi\lk-l - xklk-1]T (2.25)
i=O

Zklk-1 h(X~k_1' X~lk-1) (2.26)
2na

zklk-1 L H/iZi,klk-1 (2.27)
i=O

• IVleasurement update equation

2Tl a

PZkZk L lVdZi,klk-1 - zklk-1][Zi.klk-1 - Zklk-1f (2.28)
i=O
2na

PLkZk L Hfi[Xtklk_l - xklk-l][Zi.klk-l - xklk_l]T (2.29)
i=O

J(t PXkZkPZ~;k (2.30)

Xk xklk-l + J(k(Zk - zklk-l) (2.31)

Pk Pk1k - 1 - J(kPZkZkJ([ (2.32)

scaling parameter, na = n x + nv + nw , and the weight lVi, i = 0, ... , 2n a is

13
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calculated by
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A/(na + A)

1/2(na + A), i = 1, ... , 2na

14
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Chapter 3

PROBLEM STATEMENT

At time t 1 t 2 ... measurements Zl, Z2, ... are provided, each belonging to the measure-

ment space Z. The target moves through a state space X and for time tk has state

Xk. The task is to estimate the state with the knowledge of the sequence of radar

measurement.

3.1 Target State Propagation

The target state in the 2D Cartesian space is composed of the horizontal position,

vertical position, horizontal velocity and vertical velocity. which is

[ .. ]'Xk = x,y,x,y

Generally, the nonlinear state evolution model is given as:

15
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with the process noise Vk a zero-mean white acceleration sequence. For simplicity

of the mathematics deduction, a linear time invariant system with constant velocity

model and the fixed sampling period T is considered here.

(3.3)

observe that the result algorithm also works for the nonlinear system, or other more

complicated scenario, like multiple model (~/IM) or interacting multiple model(I~IM).

The propagation matrix is taken as

1 0 T 0

0 1 0 T
Fk = F=

0 0 1 0

0 0 0 1

(3.4)

and the noise gain is

IT2 02

0 IT2

r k = r =
2

T 0

0 T

(3.5)

The covariance of the process noise multiplied by the gain, rVk, is

IT4 0 lT3 04 2

0 IT4 0 IT3
Q = E[rVkV~r/] = 4 2 (12 (3.6)v

IT3 0 T 2 02

0 lT3 0 T 2
2

16
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where

Mcl\!Iaster - Electrical Engineering

is the acceleration noise along each axis.

(3.7)

3.2 Target Generated Measurements

The investigation provided here focused on the combination of two kinds of measure­

ments in two space variants: position measurement provided in spherical coordinates

and Doppler measurements. And the observation of target are modeled by an additive

nOlse process

where h is measurement model composed of following parts

r(Xk)

h(Xk) = e(xlJ

r(xk) or 61~(Xk)

where the range measurement r

bearing measurement e

e(Xk) = arctan(y/x)

17
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and Doppler measurement f without ambiguity or 6f with ambiguity is

dT
dt
( xx + yiJ )
Jx2 + y2

mod (7\ vI)

(3.12)

(3.13)

VI is a given constant named first blind velocity which is determined by the PRF as

1
VI = -A x PRF

2

where A is the wavelength of the radar waves.

(3.14)

The measurement noise Wk is a white, zero mean gaussian random variable with

covanance
2 0 pO"rO"rO"r

R= 0 0"2 0 (3.15)
()

pO"r 0"1' 0 O"?r

where O"r, 0"() and 0"r ( 0"6.i· = 0"1' ) are the standard deviation of the additive

white noise for the range, bearing and Doppler measurement, respectively. According

to (Bar-Shalom, 2000), there is a strong negative correlation between the range

measurement error and Doppler measurement error, e.g., p = -0.9. Hm;>,Tever, here

each measurement is independent of each other. thus p = O.

18



Chapter 4

SINGLE TARGET TRACKING

WITH DOPPLER AMBIGUITY

4.1 UKF with Doppler Ambiguity

The measurement can be written as

(4.1)

where zp = [1', e] is the position measurement and Zd is the Doppler measurement.

Two types of Doppler measurements a.re considered here: Unambig'uous Doppler zy
and A mbiguous Doppler zt. lvloreover. for a certain target. two types of Doppler

measurements can be written as

19
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where nd is noted as Doppler order here.

Assume that in Fig. 4.1 the circles are the sigma points of zy, which hold the first

and second order of Gaussian variable's statistic property, the mean and covariance,

during the unscented transformation. However, when the implement of UKF with

Doppler ambiguity, the distribution of cross sigma points ( the components of zy
) might vary because of the discontinuity of the mod function, illustrated as the

following figure :

0.5 I 0 Unambiguous Doppler I
X Ambiguous Doppler

~ ... ~ ~

-D.5

-1 o 8 10 12
Doppler measurement (m1s), vi' = 10, case 1

14 16 18 20

201816148 10 12
Doppler measurement (mls) , vf= 10, case 2

1

I 0 Unambiguous Doppler
X Ambiguous Doppler

5

5

1

o.

-D.

0.5 I 0 Unambiguous Doppler I
X Ambiguous Doppler

-D.5

-1 o 8 10 12
Doppler measurement (mls). vr =10. case 3

14 16 18 20

Figure 4.1: Examples of Sigma Points Distribution

For the first case, all the sigma points for the ambiguous Doppler measurement

20
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ZYd have the same value of Doppler order, thus for each sigma point i, ni,d = nO,d'

Thus, compared to the unambiguous Doppler ZY,d' it holds that

2n a

Z~t-l = L lVi (zftlt-l - nO.dVJ) = ZKt-l - nO.dvJ
i=O

and

2na

P . _ '" 111.[ U _ -u ]2 _ pzt z(" - L...t I t ZUlt-l Ztlt-l - zY zY
i=O

(4.3)

(4.4)

where the mean shifts by nO,dVJ and the covaria.nce conserves. Therefore, in this case

the UKF can be implemented directly with ambiguous Doppler measurement.

In the second case, there exists at least one sigma point that ni,d =I nO.d' It can be

seen that the distribution of the ztd is different from ZY,d because of the "wrapped"

points. The mean and covariance of ztd can be written as

(4.5)
2na

L H/dZftlt-l - ZKt-l - nd.ivJ + nO.dvf + C]2
i=O

Pzuzu - C2 + VJC +
t t

L 2vJH/dZi~ll_l - ZKt-l - nivJ - nO.dvJ - C] (4.6)
i.ni=n+l

where C = Li,ni,d=nd,o+l1;l/i.i\l. Generally, the mean and covariance ha.ve been cor­

rupted for "wrapping" purpose.

To solve this problem, assume that the range of the Zfd for all i is short compared
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to the value of vJ, so that it is reasonable to hold that

(4.7)

Therefore, in order to make sure that all the points have the same order no under the

previous assumption, the "wrapped" points can be modified by shifting them closer

to center point Zt.d: For i > 0

Observe that after the shifting, Doppler measurement ztd for each sigma point is no

longer ranged in [0, A1] but with identical Doppler order.

In the third case,

(4.8)

It is impossible to determine shifting methods for the wrapped points, because those

points are closer to the center point, with assigned a false Doppler order rather than

the correct one. However, this type of widespread case rarely happen due to the high

accuracy of the Doppler measurement.

The innovation of measurement is also an ambiguous problem. Assume the predict

mean z~\ and covariance is correct, with the receiving measurement zJ, the innovation

can be written as

(4.9)

(4.10)
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where vA and v U denote the innovation of unambiguous Doppler and ambiguous

Doppler, respectively. Observe that only vU is the correct range rate innovation.

Because of the difference between the Doppler order of the prediction and true mea-

surement, the innovation vA could be corrupted by 6ndvJ, where 6nd is unknown

difference. To solve this unknown ambiguity, under previous accuracy assumption, it

is reasonable to choose the closest candidate value of zy to the prediction Z~L-l by

ML estimation, as our innovation in Kalman update. It is implemented as

aTgminllfl = argminlvA
- 6ndvJI

6nd 6n

vA - 6n'dvJ

4.2 MHT with Doppler ambiguity

(4.11 )

(4.12)

In this section, it is assumed that: 1) The measurement-to-track association is done.

2) There is only one target of interest and, modeled by (3.5). 3) The track has

been well initialized. 4) One associated measurement, with Doppler ambiguity z: =

[Zp,k, ztkJ' is received at time k, short for Zk modeled by(3.9).

Now, based on the measurement model, the receiving measurement is composed of

position Zp,k and ambiguous Doppler measurement Zd,k. According to (3.13), assume

that the Doppler order takes the candidate value form the Doppler order set nd =

{-nmax,· .. ,-l,O,l, ... ,nmax} or written as nd = {ndt~l for convenience, where i the

index of the chosen Doppler order in the set and N = 2nrnax + 1. And the value of

Doppler order is bounded by the maximum velocity Vmax that Ivmaxl S nmaxvJ.

In the section of UKF tracking, nd is determined via NIL estimation, which could

be incorrect in some certain case. In the following methods, MHT and PDA, which
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used to be the algorithm solving the ambiguity of measurement-to-track association,

are applied to solve the Doppler ambiguity problem (unknown Doppler order).

The IvIHT algorithm is presented to deal with the measurement-to-track associ­

ation in multitarget tracking (Reid, 1979). The Key idea of .MHT is exhaustively

searching all possible association events from time 1 to time k and find the one

with greatest probability. Instead of measurement-to-track association ambiguity,

the .t\iIHT algorithm is applied to solve the Doppler ambiguity, or the value of the

Doppler order of each measurement in this paper.

Let a cumulative event, a fix sequence of Doppler order through time k be

(4.13)

This cumulative event is made of a parent event through k - 1 and the offspring event

or current ambiguity event which allocates a feasible value of Doppler order for the

current measurement, where the current ambiguity event

Bi(k) = {nd.k = i, i E {O, ... , N}} (4.14)

means the Doppler order for measurement Zk is equal to i in event Bi (k).

The set 8 k = {8 k ,j} j contains all the possible ambiguity hypotheses. Each hy­

potheses in this set provides a fixed sequence of Doppler order from time 1 to k. The

.t\IHT requires an exhaustive search, which means all the hypotheses are generated

and evaluated in order to find the most probable hypothesis. The representation of

these hypotheses is done using tree data structure.
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·With Bayes' formula, the conditional probability of cumulative event is

P{B(k), ek-l,slzk, Zk-l}

P{ Zk, B(k) lek -1.S, Zk-l} P{8 k -1.S\Zk-l}

P{zkI Zk- l }

~P{ Zk, B(k) 18k-1.S, Zk-l} P{ e k -1.Slzk- l }

Co

~P{ zkIB(k), 8 k-l.S, Zk-l} P{B(k) lek-l,s, Zk-l} P{e k-1.S IZ"(t!~ }5)
Co

where fa- is the normalization factor. The second item on the right-hand side (RHS)

can be \uitten as P{zkIB(k), Zk-l}. Assume that B(k) = Bi(k) = {nk = i}, then the

ambiguity of Doppler measurement is solved by

(4.16)

where Z~t = Z~~t + i1l1. This item is the likelihood of the unambiguous measurement.

The third item on the RHS in (4.15) is the prior probability of ambiguity event.

A uniform distribution is used here, thus

The last item on the RHS in (4.15) is the parent's hypothesis probability.

After all, equation (4.15) can be written as

P{8k·j IZk} = ~P{zfIB(k). Zk-l}p{ek-1.Slzk- 1 }
C
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Based on above analysis, the :MHT approach considers both the association of se-

quences of Doppler order and evaluation of the probabilities of all ambiguity hypothe-

ses. One the other hand, MHT will result in a complexity increasing exponentially

with time. Appropriate methods, like valid gating and pruning of 10\~r probability

hypotheses, are applied to constrain the number of hypotheses. Fig. 4.2 provides an

example of how to evolve and manage hypotheses.

Prior
Hypot eses

Springoff
Hypotheses

P;0003

Pruned
Hypotheses

P>;O.05

Hypothes;s I, P • 0 1 O~l--p=_o_.O_9_~~o
N~ P;O.007

P"'O.l

~
N=.l N=O .()-P-=-O-.86-~~O

Hypothesis 2, P = 0.9 ~O

=1 P=O~4

Figure 4.2: Example of Evolving and lVIanaging Hypotheses

In this figure, new spring-off hypotheses are generated based on two existing parent

hypotheses. The probability of each spring-off hypothesis is calculated by equation

(4.18). Then all these hypotheses are managed by pruning the ones with low proba-

bility and the survived ones are unified and propagated into the next run.

4.3 PDA with Doppler Ambiguity

MHT is considered as the optimal algorithm to solve ambiguity problems. However,

it is limited by the computational load because of exponentially increasing number
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of hypotheses. A suboptimal method, Probabilistic Data Association ( PDA) (Bar-

Shalom and Tse, 1975), is used here as suboptimal solution for Doppler ambiguity in

single target tracking.

In addition to assumptions in previous section, assume that the past information

about the target is summarized as the state estimate Xk-1Ik-1 = E{Xk_1IZk- 1} and

the associated covariance P(k - 1). Notice that this assumption is only valid for

PDA based tracking. Importantly, this assumption makes it possible to carry out an

association W.r.t the latest measurements only, comapring to association of all history

measurements in IvIHT.

The estimation is weighted sum of each possible ambiguity events. Vlith the total

probability theorem w.r.t the current measurement association events, the conditional

mean of the state at time k can be vvritten as

1nk

L E[Xklag,k' Zk]P{ag,kI Zk }
g=l

1nk

~ ~,g.klk{3LX g.k
g=l

(4.19)

(4.20)

where xg,klk is the updated state conditioned on the event that the g-th candidate

measurement is correct and

(4.21)

is the conditional probability of this ambiguity event. or the association probability.
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4.3.1 The standard PDA Update
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Combining the equation above yields the state update equation of the PDAF

where the combined innovation is

11lk

Uk = L f3i(k)Ui(k)
i=l

The covariance associated with the updated state is

P(klk) = PC(klk) + ?(k)

where the covariance of the state updated with the correct measurement is

and the spread of the innovations term is

mk

?(k) ~ VVdL (3i.kUi,kU:.k - uku~]H!k
i=l

4.3.2 Probability of Ambiguity Events

To evaluate the associa.tion probabilities, it is written as
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where P{Z(k) !ai.k, mk, Zk-l}, the joint density of the validated measurements condi­

tioned on ai,k is the product of the Gaussian pdf of the correct measurement and the

pdf of the incorrect measurement. which is assumed uniform in the validation region.
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Chapter 5

MULTITARGET TRACKING

WITH DOPPLER AMBIGUITY

5.1 Track-Measurement-Doppler Ambiguity Asso­

ciation

The data association yields decisions as to which of the received measurements should

be used to update each track. The assignment is formulated as a constraint optimiza­

tion problem, where the cost function to be minimized is a combined negative log­

likelihood ratio (LLR) evaluated using the results from the state estimator. iVloreover,

to deal with the Doppler ambiguity, not only the measurement-to-track association,

but also the measurement-to-Doppler order association must be performed. r-../lodi­

£led assignment formulation with ambiguous Doppler measurement are proposed to

resolve the considered data association problem.

For already established tracks, the problem is to associate the measurement to the
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targets and doppler ambiguity order. To present the assignment problem, the tree

diagram in Fig.5.1 provides one example of assignment shown as follow.

In Fig.5.1, dummy target or dummy measurement indicates a false track or a miss

detection, respectively. The connection between point in figure means each measure­

ment is assigned to one target and one fixed Doppler order. A more straightforward

illustration for the same assignment is shown in Fig.5.2. In this figure the Doppler

order is decoupled for each measurement, which is independent of each other in the

assignment step. In this case, a 3-D assignment will be presented.

Target Measurement Doppler Order

Dummy

2

3

Figure 5.1: Example of One Assignment

-1

o

Define a binary assignment variable a(k, 1n, t, n)

1, measurement m is associated with track t, with Doppler ambiguity order a
a(k,m.t,n) = {

0, otherwise.

(5.1 )

where t is the index of the established tracks at time k, t = 0,1, ... ,T(k), m is the

index of the observed measurements at time k, m = 0,1, ... , lIJ(k), and 11 is the
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Target r\ easurement Doppler

Dummy

0 1

o====::g : : :
o 4

o
0- 0
~O 0.1

~~

2

o

Figure 5.2: Assignment Problem

Doppler ambiguity order, n = 1, ... , N. For the dummy measurement, the Doppler

ambiguity order is set to 0 by default.

The assignment has to satisfy the following constraints

T N

L L a(k, Tn, t, n) 1, Tn = 1, ... , J..1(k) (5.2)
t=O n=l

AI N

L L a(k, Tn, t, n) 1, t = 0, 1, ... ,T(k) (5.3)
m=On=l

N

L a(k, 'In, t, n) < 1, t = 0,1, ... ,T, Tn = 0,1, ... , 1I1(k) (5.4)
11=1

The first constraint equation is that one observed measurement can only assigned

to one track. The second constraint equation is that one established track can be

associated with one measurement. The third constraint equation is that for one

measurement, at most one Doppler ambiguity order is valiel. However. it can be
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deduced from the first two constraints.
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Define the global assignment variable for current time k

a(k) = na(k, m, t, n), constrained by (5.2), (5.3)
1n

is one possible assignments for all current measurement.

5.2 MHT Algorithm

(5.5)

The optimal solution is to find the best sequence of assignment through time k. Define

a joint cumulative event (set of association histories) at k

(5.6)

which is made up of a parent event through k - 1 and the current association event

defined in [5.5]. Vhth respect to a certain current association a(k). the follmving

notations are defined for the purpose of further analysis. The detection event where

measurement is assigned with established tracks for current association a(k) is

aT(k) = n a(k,m,t,n), a(k,m,t,n) E a(k)
m,tiO

(5.7)

where current measurement m is associated with existing track t. And the num-

bel' of associated measurements is ND . The new target or false alarm event where

measurement is assigned with new target or for current association a(k) is

aNF(k) = n a(k,m,t,n), a(k,7n,t,n) E a(k)
m.i=O
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where measurement m is associated with dummy track. The number of measurement

associated to false alarm or new target is NN F. Notice that the observed measurement

is either generated by the existing target or by false alarm, which holds ND + NN F =

m(k). On the other hand, the new target is not distinguished from false alarms in

our association, which is a little different from the standard l\tIHT. The purpose of

this unification is to decrease the number of association events and make the MHT

more practical.

The following part of this section is how to calculate the probability of each

hypotheses based on the standard MHT. 'With Bayes' rules. the joint association

event probabilities are

P{ A k-1,s, a(k) IZ(k), Zk-1}

~p[Z(k) la(k), A k-1,\ Zk-1JP{ a(k) IAk-l,s, Zk-1} P{ A k-1'S}(5.9)
c

where c is the normalization constant that

NH

L:P{Ak
.
l

} = 1
1

(5.10)

1\ J-J is the total number of hypotheses at time k, m(k) is number of current mea­

surements and P{Ak-1,S} on the RHS of the above equation is the probability of

parent hypothesis. The other two terms on the RHS, p[Z(k)la(k), Ak-1,s, Zk-1J and

P{a(k)IAk-l.S, Zk-1}, will be evaluated a follows.

If the ith measurement Zi associated with track t i . the pdf of Zi is noted as Ao

which is the innovation pdf from a standard KF. Observe that according to (4.16),

the ambiguity has been solved given the condition of a fixed hypothesis a(k). And
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for a false alarm or new target, the pdf is uniform in the surveillance volume V, i.e.,

V-I.

The first term on the RHS in (5.14) is the likelihood function ofthe measurements

Z (k ), given the association hypothesis a(k). Thus

p[Z(k) la(k), A k-l,s, Zk-I]
m(k) m(k)

II fdzf,k) II V-I
iEar(k) iEaNF(k)

m(k)

1f-NNF II A (Zfk)
iEar(k)

(5.11)

Notice that the likelihood of the ZY,k is used here. Therefore, instead of the position

measurement only, Doppler measurement also contributes to the probability of each

hypothesis, 'which helps to make a better association. For example in Fig.5.3, two

measurements, ZI and Z2, fall into the valid gate of one track t 1 . vVith only the

position measurement, the probabilities of associated track t l with measurement ZI

or Z2 are almost the same. While taking Doppler measurements into consideration,

track t l would be more likely to associate with ZI rather than Z2.

rack 1

ZI

o
Doppler = 6.2

Z2

o
oppler =16 1 Doppler =3.3

......... ,.'

Figure 5.3: Example of Association with Doppler I\Ieasurement
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The second term on the RHS in (5.14) is the probability of a current data-

association hypothesis given the prior hypothesis A k-l.s, \~ hich can be written as

P{ aO(k )ad(k) IAk-l,s, Zk-l}

P{aO(k) IAk-1.s. Zk-l} P{ad(k) laO(k). A k-l,s. Zk-ffl.12)

Here the current assignment variable is broken into two parts:

1. Measurement-to-Track Assignment Variable aO(k). It is identical to the assign-

ment in the standard MHT (Reid, 1979), thus

P{aO(k)IAk - 1, Zk-l} = "ND
II. Pf\D(l_ P ) VTGT- D

, m (k) ! t""n+J D D
(5.13)

where PD is the detection probability, NTCT is the number of existing targets,

Jin+J is the new measurement or clutter density, which is assumed to be uniform

in the whole surveillance region.

2. Doppler order assignment of each measurement aO(k) According to the previ-

ous uniform assumption (4.17), it is a constant. Therefore, simplifying and

combining constants into c results in

ryl
D· pND(l _ P )NTGT-NDV-NNF
(k)l f-Ln+ J D Dc· 7TI, ~ .

m(k)

II it; (Zfk)
'iEaT(k)
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5.3 JIPDA Algorithm
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In section 5.2, an optimal solution to the problem of multitarget tracking with Doppler

ambiguity has been presented. However, in the standard form, notice that the com­

putational load is still heavy for several reasons: 1) The total number of current

associations events could rise exponentially with respect to the number of measure­

ment receiving at current time. \i\ ith respect to a fixed measurement-to-track as­

sociation, various Doppler assignment for each measurement can be chosen. For

example, No measurement-to-track assignments are generated, but the total number

of track-measurement-Doppler assignment could be up to (2Ndrn (k) No, where m(k)

is the number of current measurement and Nd is the number of possible Doppler

orders. \"Iith valid gating strategy, instead of all possible values, only the Doppler

order falling in the valid gate can be chosen for each measurement, where the gate is

according to prediction. However, the number of spring-out hypotheses is still large

when the measurements are abundant. 2) Because the hypothesis is a combination

of all history association events, the number of hypothesis grows exponentially over

time. 'With strategies referred in section 4.2, such as pruning and merging, the to­

tal number of hypotheses can be limited to make the MHT practical (Bar-Shalom

and Li, 1995). In this paper, the hypotheses that survived after pruning, might lose

the generality of the samples. For example, all the association are identical for the

measurement-to-track association, varying only in the Doppler ambiguity association

for some measurements. The loss of generality would degrade the tracking perfor­

mance, e.g., tracking divergence or track breakage. which are not expected.

Notice that the joint events are defined by the assignment variable in equation

(5.1) and (5.5), which yield the problem of track-measurement-Doppler order 3D
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assignment. As the same unifying strategy in (Bojilov et al., 2002). this 3D problem

is broken down in two steps:

1. For measurement Zi,k' all possible candidates with different Doppler orders are

unified into one merged measurement. Notice that this unifying process is a

PDA method that calculate the \Yeighted sum of state estimation updated with

all possible measurements.

2. After that, associate the existing tracks with the merged measurement.

Observe that the original 3D association problem is divided into to 2D problem

and a Doppler ambiguity for single target tracking. The purpose of the dividing

strategy is to decrease the number of events chosen, without losing the weight of the

chosen subset from all feasible assignments. Because each assignment event in step 2,

is actually a merged result of a set of events in the original 3D problem, who share the

same track-measurement association but differ from the Doppler ambiguity for some

measurements. For the first level ambiguity merging the PDA, which is presented in

detailed in section 4.3 is used. The second level association, the JIPDA algorithm is

chosen here.

The joint probabilistic data association (JPDA) (Musicki and Evans, 2004) filter

handles the possible presence of multiple targets in a joint JPDAD (Bar-Shalom and

Li, 1995) manner. The JPDAF algorithm allows for the possibility that a measure­

ment may have originated from one of a number of candidate tracks or clusters. In

each scan. all possible joint measurement-to-track assignments are generated, which

are called joint events, and calculated the posterior probability of the each joint events.

Based on the probability for each event, the data association coefficient can be cal­

culated for each track, with which the track estimates would be updated. Compared
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with rVIHT, Instead of the all history assignment, only the assignment for the current

scan is considered in JPDA. There will not be a problem of storing and updating

a set of hypotheses parallel. which is the essential drawback of MHT. In addition

JPDA is a track oriented method, leading to conveniency and consistency in target

management.

JIPDA is the same as JPDA frame but brings in the concept of target existence

in order to achieve the track maintenance. Target existence is modeled as a l'vlarkov

process, with two propagation models. rvlarkov Chain One is considered here, detailed

as follows.

l'vlarkov Chain one, which is first used in (Bar-Shalom et al., 1989), has two states:

the target exists with a detection probability PD , which is defined as event xt at time

k for track t, or the target dose not exist

The transition matrix between these two states is gi\ en as [PU P12] and it
P21 P22

holds that

(5.15)

sually, it is assumed that a dead track would never revive, so that P21 = o.

In each scan, tracks are partitioned into clusters. For Markov Chain One model,

the priori estimated number of clutter measurements ii~k in the cluster is

(5.16)

""here {L(k, t, i) is one if measurement i is in the windows of track t at scan k and zero

otherwise.

Let Xi and X denote the joint event i and the number of joint event. Let To
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and TI denote the set of tracks allocated no measurement and one measurement,

respectively, in the joint event Xi' For standard JIPDA with Markov Chain One,

nonparametric version, the posterior probability of the joint event Xi becomes

where PI~! is the probability that measurements falling into the valid gate of track

t, m(i, t) denotes the measurement, which is allocated to track t under joint event i,

and ft(Zm(i,i),k) is the likelihood of this merged measurement. Thus

The normalization constant C is calculated by

x
L p{XjIZk} = 1
j=l

(5.18)

(5.19)

The a posteriori probability of an individual track event is obtained by summing

the a posteriori probabilities of all joint events containing the track event. Denoted

by :='(t. i). the set of joint events in which track t has been allocated measurement i (0

denoting no measurement). The following posteriori probabilities in the JIPDA can

be calculated

1. no measurement originating from the track t

P{xt.oIZk} = L p{Xe!Zk}
eE=:(La)
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2. the event of target t exists with no measurement originating from the target

{
ttl k} (1 - PbP{:v )P{XtIZk- 1

} { t I k}
P Xk' Xk.O Z = 1 _ pt pt P{ t \Zk-l} P Xk,O Z

D IV Xk
(5.21)

3. the event of target t exists with measurement i originating from the target

P{xL xLIZk} = L p{XejZk}
eE::::(t,i)

4. the existence probability of track t

Then the (3 data association probability for track tare

(5.22)

(5.23)

(36
P{xt. Xi,oIZk}

(5.24)
P{xtlZk}

61.
P{xL xt OIZk}

(5.25),
I 2 P{xUZk}

Notice that in the standard JIPDA, event Xi only determines the measurement-to-

track association, with the Doppler order for each assigned measurement still unfixed.

\iVhen the assignment is expended from 2D to 3D, it can be seen that there is a set

of events who share the same track to measurement asso iation Xi. For example,

with respect to a fixed measurement-to-track association e.g., event i, each Doppler

assignment is an valid candidate.,The same method has been applied to the Inter-

acting iVIultiple :-Iodel (IMf-.I) JPDA in (Bojilov et at.. 2003) (Bojilov et al.. 2002).
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n

L P{xila(k, 1n, t, n), Zk}P{a(k, 1n, t, n)IZk}
11

L P{xda(k. 1n. t. n). Zk} P{a(k, 7??', t, n)} (5.26)
11

Observe that with determined a(k, 1n, t, n), the likelihood term f in equation(5.17)

is fixed. The prior distribution of Doppler order for measurement 1n is uniform.

According to the analysis, with respect to track to (assume it is associated with

measurement 1no in event i), equation(5.17) can be "ritten as

(5.27)

L P{xila(k, 1n, to, n), Zk}P{a(k, 1n, to, n)}
n

II (PbP\~fP{xtlzk-l}ft(Zm~,t),k)Vk) . _ft--,-o_(Z_a-,--(k-,--,~-,--0,7_n-,--0,7_,)_I;;_k N- 1

tET: .ti'to 1nk 7??'k

C- 1 II (1 - p1p,\rP{xtlzk- 1
}). II (PbP\~fP{xtlzk-l}

tETa tET:, ti'to

ft(Zm(i,t),k)Vk)('" ",- 1f (z )) Vk )
A L to a(k,to,mo,n A

7??'k 11 7??'k

Defined the merged likelihood as

.ft.(zm(i.t),d = L N- 1 flO (za(k,to,mo,11)
n

(5.28)

and replace fl(Zm(i,t),k) with the merged likelihood for each associated measurement
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Therefore, all possible unambiguous measurements, based on the same true obser-

vation, have a contribution to the probability of the measurement-to-track association

event, weighted by the likelihood. On the other hand, each event Xi covers all possible

combinations of the Doppler order for each measurement, which, yields to the rapid

reduction of the total number of events.
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Chapter 6

SIMULATION AND

PERFORMANCE EVALUATION

6.1 Single Target

6.1.1 Simulation Scenario

A single target is simulated by model (3.5) in a clean environment with the following

parameters. For the target, initial state is Xo = [1000,1000,10,10]' and process noise

is set to O"x = O"y = 0.5 m/S2. For the radar system, the first blind velocity for

the simulated measurement is 10 m/ s, vvhich is a reasonable value for the Doppler

radar system. The standard deviation of measurement noise is O"r = 100 m.O"() =

0.05 Tad,O"i = 0"{:,1' = 1 m/s.

Notice that the error of the position measurement are amplified in order to test

the contribution of the Doppler measurement to the performance. The target will
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be tracked with three different measurements: 1) Position only [1', e], 2) Ambigu­

ous Doppler measurement [1', e. ,0,,1t 3) nambiguous Doppler measurement [1', e, 1~]

respectively. Their track performance, including position and velocity RMSE, will

be compared 'with each other, where the position and velocity RMSE ep and ev are

defined as

E[Jx~ +Y~]

E[J±~ +yn

(6.1 )

(6.2)

where [Xk, Yk, ±k, Yk] is the error between the true state and the estimation at time k.

Meanwhile, to solve the Doppler ambiguity for the second kind of measurements

(with Doppler ambiguity), the aforementioned three methods are implemented re­

spectively and solved with three methods: UKF modification, MHT and PDA. For

MHT and PDA algorithms, KF tracker is used only for the nonlinear tracking.

6.1.2 Performance Evaluation

In most cases, with the points shifting and closest innovation, the UKF can solve

the Doppler ambiguity and can achieve the same track performance as that with

unambiguous one, as shown in Fig 6.1(a), where the tracking results with or without

Doppler ambiguity overlap 'with each other.

However in some instances as seen before, such as when max(ZYtlt_l) - (Z~tlt-l) ::;

vf/2, or Ivul > min.0.n IvA - ,0"ndvfl, UKF would implement with a false estimation

of mean and covariance or an incorrect innovation, which might lead to a divergence

estimation. as shown in Fig. 6.1 (b). The reason is that under an inappropriate
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Table 6.1: UKF for Doppler ambiguity
Unambiguous Ambiguous

Doppler measurement(m/s) 12.65 2.65, vJ = 10m/s

Sigma Points 19.08,22.25,21.86,19.16,18.71, 9.08, 2.25, 1.86,9.16,8.71,
15.90,16.29,18.65,19.28 5.90,6.29,8.65,9.28

lVlodified Sigma points N/A 9.08, 12.25, 11.86,9.16,8.71,
5.90,6.29,8.65,9.28

Mean z 19.02 9.02
Covariance Pzz 4.29 4.29

Innovation v = -6,37 v* = 3.63

initialization or high maneuvering condition, the accuracy assumption is not valid at

all. Table 6.1 shows how divergence happens with simulation data.

In the example table 6.1, for both ambiguous or unambiguous Doppler measure-

ments, nine sigma points of the measurement prediction are generated first by UKF

algorithm. Notice that only the Doppler components of these sigma points are listed.

And it has been seen that these sigma points with ambiguity in the second column,

have been shifted by -vJ or - 2vJ because of the mod operation. By using the

UKF modification, t,\O underlined points 2.25, 1.86 are shifted to 12.25, 11.86 be-

cause IZi - zol > vJ!2, which holds the covariance of the measurement prediction

compared to the data in the first column. The innovation calculated from the data in

the first column is v = -6,37. However, based on the shortest distance between the

prediction and measurement, the optimal innovation for ambiguous Doppler measure-

ment obtained from the sigma points in the second column is v* = 3.63, shifted by

vJ. This incorrect innovation leads to an estima ion on the opposite way to the true

target movement, which is, in another word, divergency. This divergency problem

is a cause for concern especially when the Doppler measurement is accurate (al ' is

small). In other words, the Doppl r component of the innovation influence the final
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estimation to a great degree. The reasons for the incorrect choice innovation, or poor

prediction of the Doppler measurement, can be summarized into two factors: Poor

estimation or initialization and high maneuvering.

However, the divergence is a low probability event, e.g. 322 out of 10,000 times

run as shown in table 6.2. Beside divergence events, the proposed UKF method can

solve the Doppler ambiguity correctly and achieve a better performance compared to

the estimation with position only measurements. In Fig. 6.2, it can be seen that by

the proposed algorithm, the position and velocity R1VISE of the ambiguous Doppler

case almost overlap with that of the unambiguous case.

One the other hand, the ~IHT is able to fully solve the ambiguity problem. How­

ever, with limitation of the total number of the hypotheses, which is expected to

increase exponentially with time, the prune threshold Pth is set to delete the hy­

potheses with a smaller probability than the pruning threshold. However, the correct

hypothesis, might have a low probability at the beginning, especially in a poor ini­

tialization system, such as one point initialization. Thus, even thought the correct

hypothesis could dominate over others at last, it had been deleted with this pnm­

ing strategy. The best way to keep the correct hypothesis is to set a 10\\ er pruning

threshold, which, on the other hand, brings to the problem of larger computation load

for numbers of existing hypotheses to be processed. Simulations are processed under

three different pruning threshold probabilities. Pth = 0.05. 0.001, 0.001. and 0.0001.

Like previous analysis, the rate of divergence has been counted in each condition

(including using UKF solving ambiguity), summarized in table 6.2.

From the table, observe that with the large value of prune threshold probability.

e.g., Pth = 0.05, the divergence still exists, but the rate at which it happens has

48



}'/I.A.Sc. Thesis - Li, Kaibing McMaster - Electrical Engineering

Table 6.2: The Divergence Rate
Method & threshold Divergence rate
UKF 3.22%
MHT, Pth = 0.05 0.93%
MHT, Pth = 0.001 0.10%
MHT, Pth = 0.0005 0.06%
MHT, Pth = 0.0001 0
PDA, 1.1%

been decreased by almost 70% compared with the rate in first row when using UKF.

\l\Tith choosing appropriate value of this threshold, e.g., Pt3 = 0.0001, there is no

divergence at all. In other words, the Doppler ambiguity has been totally solved in

this condition.

After eliminating the "bad" runs, the position and velocity RMSE of the tracker

are shown in Fig. 6.2. Observe that by the proposed MHT algorithm, the position and

velocity RMSE of the ambiguous Doppler case overlap with that of the unambiguous

case. Therefore, the Doppler ambiguity has been solved, and with the help of the

ambiguous Doppler measurement, the tracking performance has been increased by

more than 40%.

Compared to .MHT, PDA \~ould provide a suboptimal solution of the Doppler

ambiguity but in less time. The RMSE and the Divergence rate for the PDA method

are shown in Fig. 6.2 and table 6.2, respectively.
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6.2 Multitarget

6.2.1 Simulation Scenario
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The multitarget tracking problem is simulated. Four targets, propagating with model

(3.5) \\ ith white acceleration noise. are simulated in the surveillance region where

the starting time and initial state for each target are listed in table 6.3 and the

trajectory of each target is shown in Fig 6.3. Notice that target 1 and target 4 are

overlapped around time k = 22, but with different speed. The process noise is set to

O"x = O"y = 0.05 rn/s2
. For the sensor, first blind velocity is set to be vf = 10 rn/s

and the measurement error are O"T = 5 rn,O"o = 0.01 1'ad, 0"M = 0.7 rn/s. On the

other hand, the false alarms are generated around the whole surveillance region, with

a high clutter density in the center region as indicated by the black points in Fig

6.3. In a real scenario, the distribution of the Doppler measurement of the clutter

points depends on the source of the clutter, such as stable objects, trees or tides.

Therefore the Doppler measurements for clutters should be located in the 10\\ speed

region. However, without losing generality in this simulation, it is assumed that the

Doppler measurement for these clutter points have a uniform distribution over the

region (O,vf)'

The target will be tracked with three different measurements: 1) Position only

[1', e], 2) Ambiguous Doppler measurement [1', e, t:..7~] and 3) Unambiguous Doppler

measurement [1', e, 7~] respectively. Both ~IHT and JIPDA trackers are implemented

with the above three kinds of measurements.
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Table 6.3: The Initial State of Simulated targets
Target No. Starting time (s) Initial x (m) Initial y (m) Initial x (m/s) Initial y (m/s)
target 1 10 200 200 10 10
target 2 10 200 700 10 -10
target 3 a 100 400 10 2
target 4 a 200 200 5 5

..........!...

UXDr----r---,---,-----r---,---,-----r---,-----;====::::::;J
Target 1

-T319812
-T81ge13
-T"gel .4
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Figure 6.3: Target Trajectory and Measurements
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6.2.2 Performance Evaluation

The following figure gives one time simulation at a certain scan, Fig. 6.4. The lines

indicate the tracking results with three different kind of measurements as well as the

true trajectory of these targets. The performance of three tracking results can be

Receiver = 1, Scan = 58, Time = 00:00:57.00

o Receiver
+ Transmit1er

MeasUlement
-TnJlh

~ : L [ ==~~:~:~~;~~Doppler
-AmbIguous Doppler

nJ .

1OO .
,!';;;-00------;;;!;;----:;!;nJ;:----4OO;!;;-----;!;;;--------;:;eooS;----:;!;700~

X(m)

250 . . ; ,1'.

350 .

4001-..~., , .

500 .

eoolc.· ; ,'-

550· .

700, ..

Figure 6.4: Tracking Results

compared in the following two aspects: RMSE and number of false tracks.

Without loosing generality, all tracker's results for target 2 are compared. The

position RMSE of I1HT and JIPDA trackers are shown in Fig.6.5(a) and Fig.6.5(b),

respectively. The solid line indicates the RMSE curve for position only measurement

and the dashed line indicates that for Doppler measurement. Observe that the RMSE
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has been reduced with the introduction of the Doppler measurement, both for MHT

and JIPDA tracker. Furthermore, for iVIHT in Fig.6.5(a), although there is a notice­

able difference between the RMSE of ambiguous Doppler (dashed line with circle) and

unambiguous one (dashed line with cross) at the first 30 time scans, these two curves

overlap each other after time k = 35, clearly indicating that the Doppler ambiguity is

completely solved after then. On the other hand, in JIPDA, the RNISE of ambiguous

Doppler approach to the ambiguous Doppler curve faster but an acceptable difference

between two lines exist at all time.

Secondly, observe that in the surveillance region, especially in the high clutter

region, a large number of false tracks, which do not exist in real have been generated

with the position measurement. This is expected when two clutter measurement

points (position only) in consecutive scans have short distance between each other

and a false track is likely to be generated with these two points. However, with the

Doppler measurement, even though such point pair has a short distance in position

space it is possible to make a more strict judgement whether or not to associate these

two points by using the distance in Doppler space. The false track rate is defined as

the average number of false tracks per time scan, which is

(6.3)

where Tsim is the total simulation time and iVJ(k) is the number of false tracks at

time k.

The false track rates of three track results are compared in the first row in table

6.4. Observe that with using the Doppler measurement. the false alarm rat has

been decreased from 2.046 to 0.306 for JIPDA tracker and from 5.048 to 3.177. The
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differences between the JIPDA and NIHT is due to different tracker initialization

and management strategy. Therefore, it is not reasonable to make a judgement that

JIPDA is better than MHT from this point of view.

Table 6 4' False Alarm rate..
Position Only Ambiguous Doppler Unambiguous Doppler

J'vIHT 5.048 3.177 0.371
JIPDA 2.046 0.306 0.065

With the help of the ambiguous Doppler measurement, the false alarm rate has

been decreased by up to 85%. Hovvever, compared the optimal case without ambiguity,

a better ambiguity solving method for the multitarget tracking need to be further

studied.
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Chapter 7

CONCLUSION

In this paper a detailed study of the Doppler measurement in PRF radar system was

presented, which provides extra information of the range rate, but usually comes with

the ambiguity problem.

To utilize this range rate information, several methods were proposed to solve

this Doppler ambiguity in single target tracking problem. First, based on UKF,

the sigma points were modified to hold the statistic property of the variable (state

estimation) in a nonlinear process. VI ith such modification, a better performance

of tracking estimation can be achieved with modified UKF. To solve the Doppler

ambiguity with the history measurements, methods based on J\IHT and PDA, both

of which are used to solve the measurement-to-track association, were used to resolve

the problems considered. This paper also extended the Doppler ambiguity problem

into the multitarget tracking in cluttered environment. The analytical expression of

solving the problem via standard MHT was demonstrated here. However, to overcome

the disadvantage of the track-measurement-Doppler 3D association, the problem was
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decomposed into two 2D data association: track-measurement and measurement­

Doppler and deduce a suboptimal solution. JIPDA tracker was applied to implement

this suboptimal algorithm for the purpose of higher efficient.

Finally, based on the simulation and real Doppler radar data, it has been proven

that 1) For single target tracking, the Doppler Ambiguity can be fully solve by propose

algorithm (MHT / PDA). Although Divergence happens, the RMSE of the tracking

estimation is improved with Doppler measurement and the divergence rates are com­

pared against different methods. 2) For multitarget tracking, the false alarm rate in

the high clutter region is rapidly decreased with the use Doppler measurement.
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