Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9081
Title: The generalized Coates-Sinnott Conjecture for some families of cubic extensions of number fields
Authors: Gray, Darren
Advisor: Kolster, Manfred
Department: Mathematics
Keywords: Mathematics;Mathematics
Publication Date: 2009
Abstract: <p>Let E/<em>k</em> be an <em>S</em><sub>3</sub> extension of totally real number fields with quadratic subextension<em> F</em>/k. The generalized Coates-Sinnott conjecture predicts that for n ≥ 2, the integralized Stickelberger element <em>w</em><sub>n</sub>(<em>E</em>)<em>θ<sub>E/F</sub></em>(1-n) attached to the cyclic cubic extension<em> E</em>/F should annihilate the <em>p</em>-part of <em>H<sup>2</sup><sub>Μ</sub></em>(<em>Ο<sub>E</sub></em>, Z(<em>n</em>)) for all primes <em>p</em>. We show this to be true for all p ≠ 2, 3.</p>
URI: http://hdl.handle.net/11375/9081
Identifier: opendissertations/4236
5254
2032788
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.45 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue