Please use this identifier to cite or link to this item:
http://hdl.handle.net/11375/9081| Title: | The generalized Coates-Sinnott Conjecture for some families of cubic extensions of number fields |
| Authors: | Gray, Darren |
| Advisor: | Kolster, Manfred |
| Department: | Mathematics |
| Keywords: | Mathematics;Mathematics |
| Publication Date: | 2009 |
| Abstract: | <p>Let E/<em>k</em> be an <em>S</em><sub>3</sub> extension of totally real number fields with quadratic subextension<em> F</em>/k. The generalized Coates-Sinnott conjecture predicts that for n ≥ 2, the integralized Stickelberger element <em>w</em><sub>n</sub>(<em>E</em>)<em>θ<sub>E/F</sub></em>(1-n) attached to the cyclic cubic extension<em> E</em>/F should annihilate the <em>p</em>-part of <em>H<sup>2</sup><sub>Μ</sub></em>(<em>Ο<sub>E</sub></em>, Z(<em>n</em>)) for all primes <em>p</em>. We show this to be true for all p ≠ 2, 3.</p> |
| URI: | http://hdl.handle.net/11375/9081 |
| Identifier: | opendissertations/4236 5254 2032788 |
| Appears in Collections: | Open Access Dissertations and Theses |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| fulltext.pdf | 1.45 MB | Adobe PDF | View/Open |
Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.
