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Abstract

Let E / k be an 8 3 extension of totally real number fields with quadratic subextension
F / k. The generalized Coates-Sinnott conjecture predicts that for n > 2, the integral­
ized Stickelberger element Wn(E)()E/F(l-n) attached to the cyclic cubic extension
E / F should annihilate the p-part of Hit (VE , Z(n)) for all primes p. We show this to
be true for all p =J 2, 3.
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0.1 Introduction

McMaster - Mathematics and Statistics

Let E / F be a finite abelian extension of totally real number fields with Galois
group G. Let X E Gbe an absolutely irreducible character of G. We denote by L(s, X)
the Artin L-function associated to X with Euler factors removed at infinite primes
and primes which ramify in E. We define the generalized Stickelberger element with
values in C[G] as

BE/P(s) = L L (s, X) ex
xEC:

where ex denotes the group ring idempotent Ibl ~9EG X(g)g-l. For positive integers
n, results by Klingen-Siegel ([18]) show that BE / p (1-n) E Q[G].

When n = 1 and E is a cyclotomic extension of Q we obtain the classical Stick­
elberger element, denoted simply B. The classical Stickelberger theorem ([22]) states
that

for all f3 E Z[G] such that f3B E Z[G]. Brumer conjectured that a similar result should
hold for arbitrary abelian extensions E / F while a conjecture by Coates-Sinnott ([3])
states a similar result (over Q) for n ~ 2 in terms of Quillen K-groups.

For n ~ 2, Deligne-Ribet ([4]) showed that suitable multiples of BE / p (l-n) are
contained in Z[G]. Specifically,

Extended to arbitrary base fields (see [14] and [20]), the generalized Coates-Sinnott
conjecture then predicts that
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Coates-Sinnott proved the conjecture, up to powers of 2, for abelian extensions over
Ql and n = 2.

Assuming the Bloch-Kato Conjecture, there are isomorphisms between the higher
K-groups K 2n- 2 (OE) and the motivic cohomology groups H'1(OE, Z(n)) for n ~ 2, up
to known 2-torsion. A recent paper by Kolster and Sands ([10]) suggests that restating
Coates-Sinnott in terms of motivic cohomology should give the correct conjecture,
including 2-primary parts:

The Z[G]-annihilator of HO(E, Ql/Z(n)) is generated by its order, denoted wn(E). As
the groups H'1(OE, Z(n)) are finite, we can approach the problem prime by prime.
Proving the conjecture then reduces to showing that the integralized Stickelberger
element wn (E)eE/F (l-n) annihilates thep-part of H'1(OE,Z(n)) for all primes.

Let E / k be an 8 3 extension of totally real number fields with quadratic subexten­
sion F/k. In this paper we examine the (motivic) Coates-Sinnott conjecture for the
extension E/F. We will show that the p-part of the conjecture holds for any prime
p #- 2,3. It is inspired by a paper by Lloyd Simons ([19]), who proves the case when
n = 2. We will generalize the result to all n > 2.

Under the assumption that the Bloch-Kato conjecture holds, we can identify the
p-part of H'1(OE, Z(n)) with the etale cohomology groups H]t(Ok, Zp(n)) for all p.
To prove our theorem we need to use a result of Lichtenbaum's ([11]) relating the
values of certain L-functions to the order of these groups. We also need the Main
Conjecture of Iwasawa Theory, proved by Wiles in [24].

In Chapter 1 we review the theory of linear representation and characters, while
Chapter 2 provides the background needed to state Lichtenbaum's result. Finally, in
Chapter 3 we present the main result of our thesis.
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Chapter 1

Representation Theory

In this chapter we introduce the concept of linear representations of groups. Sec­
tion 1.1 gives some basic definitions and theorems on representation theory. Section
1.2 builds up the theory of characters, and shows how the irreducible characters of a
group allows us to break representations into a direct sum of subrepresentations. In
Section 1.3 we show that modules over a group algebra are the same as representa­
tions, and finish with a discussion of the p-adic numbers.

The background material in this chapter, especially of the first two sections, is
taken primarily from [8] and [15].

1.1 Linear Representations

Let G be a finite group, F a field and V a vector space over F. A linear representa­
tion of G in V is a homomorphism p from G into GL(V), the group of automorphisms
of V. We restrict ourselves to the case when V has finite dimension n and say that n
is the degree of the representation. In this case we identify GL(V) with GLn (F), the
group of n by n invertible matrices with entries in F. When p is given, V is called
a representation space of G. For brevity, the term 'representation' is usually applied
to both p and V, and it should be clear from the context whether we are referring to
the vector space or the group homomorphism.

3
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A linear representation assigns to each element s EGan element p(s) E GL(V).
(For convenience we will sometimes write Ps for p(s).) By definition, linear represen­
tations preserve the identity and inverse properties of G:

• p(1) = 1 (The identity matrix in GL(n, F) .

• p(S-l) = p(S)-l for all s E G.

The degree n of the representation plays a significant role. When n = 1, GL(V)
consists simply of the invertible elements of F. As G is a finite group, each element
s E G must have finite order, and it follows that Ps is then a root of unity in F. We
can always construct a representation of degree 1: we simply set Ps = 1 for all s E G.
It is known as the trivial representation.

On the other hand, consider the case when n = IGI, the order of the group G. We
can index the basis of V by the elements of G, i.e. (e9)9EG' For each s E G we define
Ps by its action on the basis elements of V:

(1.1)

It is easy to show that this defines a linear representation of G. It is known as the
(left) regular representation of G.

Before moving on, we give two more definitions. The kernel of a representation p
consists of all s E G whose image is the identity matrix. When p is injective we call
the representation faithful.

Subrepresentations

Let p be a representation of G over V with degree n. Suppose that V has a non­
zero vector subspace VV of dimension m < n that is stable (or invariant) under the
group action of G. (In other words, W E W implies Ps(w) E W for all s E G.) We
choose an ordered basis {el' ... ,en} for V such that {el' ... ,em} is an ordered basis

4
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for W. Then it is easy to show that Ps (an n by n matrix in GL(V)) must have the
block form

(1.2)

where As and Cs are square matrices of order m and (n - m), respectively. We
further note that the action of Ps on W is completely determined by As, which we
call the restriction of Ps to Wand denote by p~. It is easy to check that p~ is an
automorphism of W for all s E G. Then pW is a linear representation of G in W, and
we call ltV a subrepresentation of V. If V has no non-trivial subrepresentations, we
say that V and p are irreducible. This brings us to an important result:

Theorem 1.1. Let V be a linear representation ofG defined over the field F. Suppose
the characteristic of F does not divide the order of G. Then for every subrepresenta­
tion W ofV there exists a complement ltV' ofW in V which is also a subrepresentation
ofG.

Proof. We follow along the lines of the proof given in [15, p. 6]. Let WO be an arbitrary
vector space complement of ltV in V. Let 7fa be the corresponding projection of V
onto W (i.e. 7f5 = 7fa and 7fa(w) = w for all W E ltV). The characteristic of F does not
divide the order of G, so IGI is invertible in F and we define a linear transformation
7f : V ---+ W by

1 "" -1
7f = IGI LJpg' 7fa' Pg

gEG

with p the group homomorphism associated with the representation V. It is easy to
check that this is a projection of V into ltV. We now claim that W' = ker(7f) is stable
under G. First we show that Ps .7f = 7f • Ps for all s E G:

-1 1 "" -1 -1 1 "" -1Ps .7f. Ps = IGI LJPspg' 7fa' Pg Ps = IGI LJPsg' 7fa' Psg = 7f

gEG gEG

5
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Now suppose x E VV' . Then for any s E G, 7r . Ps(x) = Ps . 7r(x) which, as
x E ker(7r), must be zero. Then Ps(x) E vV' as well, showing"that W' is stable under
G and therefore a subrepresentation of V.

We finish by showing that V = vVEBvV' . For any v E V, write v = 7r(v)+(v-7r(v)).
The first term is in VV and the second is in W', so V = W + W'. Now suppose
v E W n VV' . Then v = 7r(v) because v E W, but 7r(v) = 0 because v E W'. So
W n lIV' = 0 and V is a direct sum of the two subrepresentations. 0

For" the remainder of this chapter we will assume that all representations of a
group G are defined over a field whose characteristic does not divide the order of G
and that Theorem 1.1 holds.

We return to the representation described in (1.2). As W is a subrepresentation
of V there exists another subrepresentation VV' of V such that V = W EB W'. Then
B s = 0 and (1.2) reduces to

_ [p;v 0]
Ps - .o WiPs

In fact, a consequence of Theorem 1.1 is that every representation is the direct
sum of irreducible representations. If P is a representation of G, then for every
s E G the element Ps E GL(V) can be expressed in block diagonal form. To study a
representation V, we should therefore look at its decomposition

into a direct sum of irreducible representations. Unfortunately this decomposition
may not be unique. To construct a unique decomposition we must first introduce the
idea of 'similar' representations. Suppose V and V' are both representation spaces of
G with linear representations p and p', respectively. If there exists an isomorphism
7 : V ---+ V' such that 7 . Ps . 7-1 = p~ for all s E G, we say that V and V' are
isomorphic (or similar).

6
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To form a unique decomposition we group together all the irreducible subrepre­
sentations which are isomorphic to one another. Let U1, . .. ,Uh be a set of distinct
(up to isomorphism) irreducible subrepresentations of V, and let Vi be the direct sum
of all the subrepresentations of V which are isomorphic to Ui . Then

(1.3)

is a unique decomposition, known as the canonical decomposition.

It is then apparent that to study a given representation V, we need to understand
the distinct irreducible subrepresentations of V. This is made much easier through
the use of character theory, developed by Georg Frobenius.

1.2 Character Theory of Finite Groups

1.2.1 The Character of a Representation

Let p be a representation of G over V with degree n. The character X afforded by
p is the map from G into F defined by

X(s) = trace(ps)

for all s E G. We call X irreducible when p is irreducible, and the degree of X
is simply the degree of p. In general characters are not homomorphisms. However,
when n = 1, X and p are indistinguishable and therefore X is indeed a homomorphism.
We call characters of degree 1 linear characters. The character afforded by the trivial
representation is called the principal character of G and denoted XO.

The characters of a group G are closed under addition. Let X and X' be the
characters afforded by representations V and V'. Then the sum X+X' is the character
of the representation V EEl V'. As every representation can be written as the direct

7

~
I



M.Sc. Thesis - Darren Gray McMaster - Mathematics and Statistics

sum of irreducible subrepresentations, so can every character be written as the sum of
irreducible characters. The nature of the trace formula also gives the following facts
about characters:

• X(l) = n

• For all s,t E G, X(tst- 1
) = X(s)

The second property shows that X is a class junction on G. As an immediate
consequence, it is clear that similar representations afford the same character. The
converse is also true, but before showing why we need to look at the orthogonality
relations between irreducible characters of G.

Orthogonality Relations

For the remainder of this section we restrict ourselves to representations and
characters defined over the field of complex numbers.

Let H be the set of class functions on G. For ¢, 'IjJ E H, we define a scalar product
as follows:

1 """" -1(¢, 'IjJ) = TGf L..J ¢(t)'IjJ(t )
tEG

This inner product gives the following results on characters of G [15, p. 15]:

• A character X is irreducible if and only if (X, X) = 1.

• For two distinct irreducible characters X and X' we have (X, X') = O.

The irreducible characters of G clearly form an orthonormal system in H with
respect to this inner product. In fact they form a basis for all the class functions of

8
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G. If we let h be the number of irreducible characters of G, then h = IHI, the number
of conjugacy classes of G.

We can use this inner product to prove that two representations affording the
same character must be isomorphic. Let V be a representation of G with character
rp. We can write V as the direct sum

of irreducible subrepresentations. If Wi affords the irreducible character Xi then

rp = Xl + X2 + ... + Xk·

Let U be an irreducible representation with character X. To find out how many
of the Wi in V are isomorphic to U we simply take the inner product of rp with X:

Each of these terms is one or zero, depending on whether or not Wi is isomorphic
to U. Then (rp, X) 'counts' the number of irreducible subrepresentations of V which
are isomorphic to U.

If Viis another representation affording rp, then by the above argument V' and
V will contain the same number of copies of U. We can do this for every irreducible
representation U of G, showing that V' and V are isomorphic.

We return to the canonical decomposition of a representation V as given in (1.3):

9
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Each Vi is the direct sum of isomorphic irreducible representations. Let Xi be the
characters of these representations. We can find the number of isomorphic copies of
Vi contained in V by taking the inner product of the character of V with Xi' We can
also find the projection of V onto Vi by the linear map

ni """ (-1)Pi = IGI L...JXi 9 Pg
gEG

where ni is the degree of Xi and P is the linear representation of G in V.

(1.4)

With these tools, it is possible to find the decomposition of a representation using
only character theory and in general, the characters of a group G are much easier to
compute that its representations.

Character Tables

As characters are class functions, they are constant on the conjugacy classes of G.
The values of the irreducible characters on these classes are listed in a character table.
The columns correspond to conjugacy classes and the rows correspond to characters.
By convention we put the identity element in the first column and the principal
character in the first row. It follows that the first column contains the degrees of the
characters, and the first row contains only 1s.

There are a number of methods to determine the values in a character table, some
of which we will discuss here. For one, the degrees must divide the order of the
group [8, p. 38]. More information on the columns can be obtained by looking at the
character Xreg afforded by the regular representation given in (1.1). Let Xl, ... ,Xh be
the set of irreducible characters of G, each with degree ni. Then

h

Xreg = LniXi
i=l

and evaluating Xreg(s) at the elements S E G shows that Xreg(l) = IGI and Xreg(s) = 0

10
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for s -=I 1. This gives us the following:

McMaster - Mathematics and Statistics

h

Ln; = IGI and
i=1

h

L niXi (s) = 0 for s -=I 1
i=1

(1.5)

In general, this won't be enough to determine the whole table, but can be used
to complete the table once a few of the characters have been determined. Take for
example 8 3 , the group of permutations of three elements. 8 3 is of order 6 and has
three conjugacy classes: the identity, the class of transpositions (denoted 7) and the
class of cyclic permutations (denoted 0-). Then there are exactly three irreducible
characters. Their degrees divide 6 and, when squared, sum to 6. "The only possible
combination is 1, 1 and 2.

We start by listing the characters in order of ascending degree. Let \[10 denote
the principal character, \[11 the other character of degree 1 and \[12 the character of
degree 2. The character \[11 is a homomorphism of G, respectively sending 7 and
(J to 2nd and 3rd roots of unity. Given a representation p of a group into a vector
space defined over <C, one can easily check that the complex conjugate p is also a
representation, and so complex characters must come in conjugate pairs. As \[11 is
the only non-trivial character of degree 1, then it cannot admit complex values. So
\[11(7) = -1 and \[Il((J) = 1. We can then complete the table using the equations
given in (1.5):

Table 1.1: Character Table of 83

~
\[10 1 1 1

\[11 1 -1 1

\[12 2 0 -1

The character tables of abelian groups are particularly simple to determine. In
this case every element of G is its own conjugacy class, and therefore the number
of irreducible characters of G is equal to the order of G. Furthermore, the set of
irreducible characters of an abelian group is isomorphic to the group itself, making it
very easy to complete the table.

11
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1.2.2 Subgroups and Quotient Groups

After finding the characters of a group G, we may wish to determine the characters
of its subgroups and quotient groups. Conversely, knowing the character tables of
these smaller groups can usually give us information about the characters of G that
we might not otherwise have been able to determine. We study the relationship
between these characters over the next few pages.

Restricted Characters

Let H be a subgroup of G, and suppose we have a representation P of G which
affords the character X. We restrict P to the elements of H. This is certainly a
representation of H and we denote it by PH and its afforded character by XH.

If XH is irreducible in H, then X must be irreducible in G. On the other hand,
irreducibility of X does not imply irreducibility of XH. SO we cannot determine the
character table of H simply from the character table of G. The next question should
be, given the character table of H, can we determine the character table of G?

Induced Characters

We start with an arbitrary class function ¢ of H, and we construct the induced
class junction ¢G on G by defining

¢G(g) = I~I L ¢o (xgx-1)
XEG

(1.6)

where ¢o = ¢ when evaluated at elements of H and zero otherwise. This is clearly a
class function of G, and we now ask whether characters of H induce characters of G.

We make use of Frobenius} Reciprocity Theorem ([15, p. 56]): For a subgroup H
of G and class functions ¢ and 'IjJ of Hand G respectively, we have the equality

12
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where (-, .)Hand (', .) G are the inner products on Hand G and 'IjJH is the restriction
of 'IjJ to the elements of H.

Let ¢ be a character of H, and suppose X is an irreducible character of G. Then
XH is a character of Hand (¢, XH) H must be a non-negative integer. It follows that
(¢G, X) G is a non-negative integer for every irreducible character X of G. As these
form a basis for the class functions of G, we conclude that ¢G is the sum of irreducible
characters and is therefore a character of G as well. When dealing with characters,
we use the notation Indfr¢ instead of ¢G.

If Indfr¢ is irreducible in G, then ¢ is irreducible in H. Unfortunately, as with
the restricted character, the converse is not always true. We still need to investigate
the induced characters to see if they are irreducible.

Quotient Groups

Let N be a normal subgroup of G. Two equivalent definitions of normality are:

• N is the union of conjugacy classes of G.

• N is the kernel of some group homomorphism of G.

To find the normal subgroups of G one must simply look at its character table. It
is easy to show that the kernel of a representation affording X is the set of 9 E G such
that X(g) = X(l). Scanning the row beside X, we look for the columns of conjugacy
classes whose values match the first column. The union of these conjugacy classes
is the kernel of the representation, and therefore a normal subgroup. In fact, every
normal subgroup N <I G is the intersection of some of these kernels, and can be found
by inspection.

Once we find a normal subgroup N <lG, it is very easy to determine the irreducible
characters of the quotient group G/ N. If N is in the kernel of a representation

13
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affording X, then X is constant on the cosets of N in G. The class function X of GIN
defined by X(gN) = X(g) is a character of GIN and irreducible if X is irreducible.
Similarly, for any character of GIN we can define a character on G using this same
definition, which also preserves irreducibility.

As an example, consider the group G rv 84 , with character table shown below:

Table 1.2: Characters of Grn (12) I (12)(34) I (1234) I (123) I
Xo 1 1 1 1 1

Xl 1 -1 1 -1 1

X2 2 0 2 0 -1

X3 3 1 -1 -1 0

X4 3 -1 -1 1 0

We look at the third row and determine that the kernel of the representation
affording X2 is the conjugacy class of (12)(34) along with the identity. This must
be a normal subgroup, which we will call N. We now wish to know the irreducible
characters of GIN. By inspection N is contained in the kernel of the representations
affording Xo, Xl and X2, and these must be irreducible characters of the quotient
group. This gives us the Table 1.3, where 9 is the coset in GIN containing the
conjugacy class of g E G. This table has too many columns for a character table, but
some of these are simply repeats. In GIN the elements of columns two and four are
conjugate, as are the elements of columns three and five. Eliminating the last two
columns gives us the character table of 83 , which is indeed a quotient group of 8 4 ,

Table 1.3: Characters of GIN

em (12) I (12)(34) I (1234) I (123) I

Xo 1 1 1 1 1

Xl 1 -1 1 -1 1

X2 2 0 2 0 -1

14
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Knowing the character table of G, it is a trivial task to construct the character
tables of all the quotient groups of G. On the other hand, knowing the irreducible
characters of quotient groups can help fill in many of the values of the character table
of G.

1.3 Representations as Modules

1.3.1 Changing the Field

The nature of a representation V depends greatly on the field F over which V is
defined. When we want to emphasize F we will refer to representations and characters
over F as F-representations and F-characters.

Unfortunately, some of the orthogonality relations we developed in the last sec­
tion do not necessarily apply to representations over arbitrary fields. Take the case
when G is the cyclic group of order 3 generated by an element (J. We consider the
representation of G defined by

and ask whether or not p is reducible. As a C-representation it must be, because p
would afford a character of degree two, and the irreducible C-characters of an abelian
group are always linear. As a Q-representation, however, it is irreducible, as Q does
not contain any primitive 3rd roots of unity.

We introduce the concept of absolute irreducibility. Let p be an F-representation.
We say that p is absolutely irreducible if p is irreducible over E for every field exten­
sion E :2 F. Characters afforded by absolutely irreducible representations are also
called absolutely irreducible. Every character ¢ is the sum of absolutely irreducible
characters, which we call the absolutely irreducible components of ¢.

15
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When F is algebraically closed (such as C), then every irreducible F-representation
is absolutely irreducible ([8, p. 146]).

1.3.2 Module Theory

Let G be a group of finite order and V a vector space over F. Consider the group
algebra F[G]. The elements of F[G] may be written uniquely in the form

with ag E F. If p is a representation of G in V, then we can define an algebra
homomorphism from F[G] into End(V) by linear extension:

This gives V the structure of an F[G]-module. Conversely, if given an F[G]-module
V, we can easily construct an F-representation of G in V: for 9 E G and x E V
we simply define pg(x) as the module action of 9 on x. This shows that there is a
bijection between modules and representations:

V an F[G]-module

V a vector space over F

and

p : G ----+ GL(V) a representation

This allows us to use representation theory when trying to determine the features
of an F[G]-module. Some of the terminology is different when speaking of modules.
Subrepresentations are the same as submodules, and irreducible representations are
simple modules. If V is the direct sum of simple modules we call it semisimple. For

16
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the purposes of this paper we are interested in the semisimple case, for which we need
the following important theorem.

Theorem 1.2. (Maschke's Theorem) Let G be a finite group and F a field whose
characteristic does not divide IGI. Then every F[G]-module is semisimple.

Maschke's Theorem is equivalent to Theorem 1.1, but expressed in terms of module
theory. If we replace the field F by an integral domain R, the theorem applies to
R[G]-modules as well, provided that IGI is invertible in R.

1.3.3 Decomposition over the p-adic numbers

Let p be a prime. The p-adic numbers, denoted Qp, are constructed by completing
Q with respect to the p-adic metric. The theory of p-adic numbers was developed
by Kurt Hensel in 1897 and is used extensively in number theory. An equivalent
definition of Qp is as the field of fractions of Zp, the p-adic integers, which we now
define.

Let Ii denote the canonical homomorphisms from Z/piZ to Z/p(i-l)Z for i :::: 2.
If S is the ordered Cartesian product of the sets Z/piZ, then we define the p-adic
integers as the ring

In other words, Zp is the inverse limit of the following sequence of rings:

We are going to need to work with the p-adic numbers throughout this paper, and
so we state some important properties of Zp.

17
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Theorem 1.3. ([13, p. 63j) The ring Zp has the following properties:

e Zp is a local ring with unique maximal ideal pZp.

• Zp/pZp is isomorphic to Z/pZ.

• We can embed the integers Z in Zp by mapping x 1---+ (Xi) where Xi is the image
in Z/piZ of X.

• (ai) E Zp is a unit if and only if al -# o.

• Zp is an integral domain of characteristic zero.

Let n be an integer. The ring Z/pZ contains the n-th roots of unity if and only if
n divides (p - 1), and by the properties above, the same applies to Zp/pZp. Hensel's
Lemma shows that we can lift these roots into Zp, giving the following corollary:

Corollary 1.4. (Proposition 3.4.2 of [7j) The p-adic integers Zp contain the n-th
roots of unity if and only if n divides (p - 1).

Let A be a finite abelian group. We denote by A(p) the Sylow p-subgroup of A,
consisting of all elements X E A whose order is a power of p. (This is also called the
p-primary component of A.)

Theorem 1.5. Let A be a finite abelian group. Then A®zZp is isomorphic to A(p).

Proof. We begin by looking at A ®z Z/piZ for i 2: 1. Let q -# p be a prime and
consider the subgroup A(q) of A. An element X E A(q) has order qm for some m. As
qm is prime to p then it is invertible in Z/piZ, and for any y E Z/piZ we get

x®zy
m 1

q x®z-yqm
O.

So A(q) ®z Z/piZ vanishes for all q -# p. Then

18
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by a result in [5, p. 370]. Inverse limits commute with tensor products, and so we
now take the inverse limit of A Q9z ZjpiZ to get

For i large enough, piA(p) must be zero. Then the inverse limit is isomorphic to A(p)
as claimed. 0

Let G be a finite group. The p-part of any finite Z[G]-module can be found by
tensoring with ZPl producing a Zp[G]-module. We will be working with Zp[G]-modules
in the main theorem of our paper l and will need to know when they decompose into
a direct sum of submodules. By Theorem 1.3 the order of G is invertible in Zp if and
only if it is prime to p. Maschke's Theorem then gives the following:

Corollary 1.6. Let p be a prime and G a finite group whose order is prime to p.
Then any Zp[G]-module is semisimple.

To decompose a Zp[G]-module NI into a direct sum of submodules we need the
irreducible Qp-characters of G. For each such X we form the group ring idempotents

X(l) ~ -1
ex = lGf L-x(g )g

gEG

(1.7)

which are exactly the projections given in (1.4) but written in terms of module theory.
These idempotents are actually elements of Zp[G] and so we may write M = (f)exNI
for any Zp[G]-module M.
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Chapter 2

L-Series and Cohomology

In this chapter we build towards a theorem of Lichtenbaum's that relates the val­
ues of Artin L-functions at negative integers to the order of certain etale cohomology
groups. Beginning with the Riemann Zeta Function, Section 2.1 takes us through
various types of Dirichlet series before showing how to construct the Artin L-series,
along with some well-known results. Section 2.2 tackles cohomology. We begin with
the definition of group cohomology and discuss the relationship between etale coho­
mology and Galois cohomology. Finally, in Section 2.3 we introduce Lichtenbaum's
theorem and discuss its application.

The theory of Artin L-functions presented in this paper is taken primarily from
[12] and the cohomology theory from [2] and [16].

2.1 Artin L-Functions

We introduce the Artin L-Functions that form the basis for our Stickelberger
element, and quote some results that will prove useful. We begin with one of the
most prominent functions in number theory, the Riemann Zeta Function:
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This function is given in terms of a complex variable 8 and is absolutely convergent
when Re(8) > 1. On this half-plane, we also have the equality

where p runs through the prime numbers, known as Euler's Identity. The Riemann
Zeta Function can be continued meromorphically to the entire plane with a simple
pole at 8 = 1.

Closely related to the Riemann Zeta Function are the Dirichlet L-8eries. Let X
be an irreducible character from (Z/mZ)* into C. By extending the definition of X
to all of Z we obtain the Dirichlet character mod m:

x(n) = {~(n mod m)

We now define the Dirichlet L-series

if gcd(n, m) = 1

otherwise

£(8, X) = f X(~)
n

n=l

where 8 is a complex variable with Re(8) > 1. The L-series is very similar to the
Riemann Zeta Function, as it also converges absolutely on the half-plane Re(8) > 1
and obeys Euler's Identity:

1
£(8, X) = II -l---X(-p)-p--s

p

21
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Similarly, it can be continued to a meromorphic function on the whole complex plane,
and is then called the Dirichlet L-function. For XO the principal character (Xo (n) = 1
for all n) we see that the Riemann Zeta Function is actually a special case of the
Dirichlet L-functions.

Both the Riemann Zeta Function and the Dirichlet L-functions are attached to
the field of rational numbers Q. We now introduce the Dedekind Zeta Function and
Hecke L-series, which extend the definitions of these previous tools to an arbitrary
number field K.

The Dedekind Zeta Function is defined as the series

where a runs through the non-zero integral ideals of K with SJ1(a) their absolute norm.
For an integral ideal m, we define Jm to be the group of all ideals of K relatively prime
to m. Given a character X of finite order from Jm into the complex numbers, we define
the Hecke L-series

'" x(a)
L(s,X) = L..- SJ1(a)s'

Cl

setting x(a) = 0 whenever (a, m) i:- 1. The Dedekind Zeta Function and Hecke L­
series reduce to the Riemann Zeta Function and Dirichlet L-series when K = Q. Both
functions are absolutely convergent when Re(s) > 1, and both have analogues to the
Euler Identity, where p runs through the prime ideals of K:

1
L(s,X) = II 1- X(p)SJ1(p)-s

p
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We should mention that the notation L(s, X) is used both for Dirichlet L-series
and Hecke L-series, but that this does not lead to confusion as the character X will
tell us whether we are working over (Q or a number field K.

The Dirichlet L-series and Hecke L-series are defined for characters of abelian
groups. Artin wished to expand the theory in terms of characters of Galois extensions.
As an introduction, consider the field (Q(ILm ) obtained by adjoining the m-th roots of
unity to (Q. Let G be the Galois group Gal((Q(ltm)/(Q). Then it is a well-known fact
that (Z/mZ)* is isomorphic to G via the map

a mod m f---------+ (Ja

where (Ja EGis an automorphism ofthe m-th roots of unity defined by (Ja((m) = ((m)a
for (m a primitive m-th root. Then any Dirichlet character mod m can be considered
as a linear character X from G into the complex numbers. We can rewrite (2.1)
in terms of this linear character as long as the product runs over primes p which
don't divide m. When p is a prime, the automorphism (Jp defined above is known as
the Frobenius automorphism and denoted !.(Jp. Putting it all together, we obtain the
following expression for the Dirichlet L-series of X in terms of the Galois extension G:

1
L(s X) = II ----:---:---, 1 - X(!.{J )p-s

Plm p

We can similarly view the characters of the Hecke L-series over K as characters
of Gal(Km/K) with Km the ray class field extension with respect to the modulus m.
This field extension K m/ K generalizes the cyclotomic fields to arbitrary base fields
K. We know that any abelian extension of (Q (or relative abelian extension of K)
is contained in a cyclotomic extension (or ray class field extension). In this way, we
can view the Dirichlet L-series and Hecke L-series as series defined for characters of
relative abelian extensions of (Q and K respectively. The Artin L-series were developed
to generalize this notion to arbitrary Galois extensions L/K and representations of
Gal(L/K).

Let p be a prime ideal of K and let s.:p be a prime ideal of L lying over p. Suppose
p is umamified in L. Then there exists a unique automorphism !.(Js,p E Gal(L/K) such
that
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<p\l3(a) - a SJ1(p) mod 5,}! (2.2)

for all a E th [12, p. 58]. It is the Frobenius automorphism mentioned earlier,
defined for arbitrary number fields instead of (Q. Suppose p is a representation of
Gal(L/K) in V. Then <P\l3 is sent by p to an invertible matrix in GL(V). Consider
now the determinant

det (1 - p(<P\l3)SJ1(p) -S)

defined for Re(s) > 1. For 5,}! and 5,}!' above p, the elements <P\l3 and <P\l3' are conjugate
in Gal(L/K), and so p(<p\l3) depends only on p, not the choice of 5,}!. We define the
(partial) Artin L-series associated to the representation p as

1
L(s,p) = II det (I - p(<p\l3)SJ1(p)-s)

p

where p runs through those prime ideals of K which are unramified in L.

(2.3)

The Artin L-series defined above is not quite complete, as we still need Euler
factors for those primes p which ramify in L. There are only finitely many such
primes, but when it is the case, the Frobenius automorphism <P\l3 as given in (2.2) is
not well-defined. It is, however, well-defined on the submodule V1'.jJ where 1\l3 is the
inertia group of 5,}! over p. For a prime p which ramifies in L we define the Euler
factor

the characteristic polynomial of <P\l3 on VI'.jJ. Including these factors in (2.3) completes
the Artin L-series.

The Artin L-series are attached to representations p of Gal(L/K), whereas the
Dirichlet and Heeke L-series are attached to characters. However, the Euler terms in
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the Artin L-series are identical for isomorphic representations, and we showed earlier
that two representations are isomorphic if and only if they afford the same character.
In light of this, we define the Artin L-series associated to the character X of Gal(L/K)
as

L(8, X) = L(8, p)

where p is any representation of Gal(L/K) affording X. Once again, to distinguish
an Artin L-series from the Dirichlet or Hecke L-series, one simply has to consider the
Galois group over which X is defined.

For an abelian extension of (Q, the Artin L-series is identical to the Dirichlet L­
series. Taking a relative abelian extension of a number field K similarly gives us
the Hecke L-series over K. We can also obtain the Dedekind and Riemann Zeta­
Functions by taking X to be the principal character; we include this result in the
following theorem.

Theorem 2.1. ([12) p. 522j) The Arlin L-series have the following properties:

• For the principal character XO of Gal(L/K) we have

(2.4a)

• If Xl and X2 are characters of Gal(L/K) then

(2.4b)

• For an intermediate field L ;2 M ;2 K) and a character X of Gal{L/NI) we have

L(8, X) = L(8, x*) (2.4c)

with X* the induced character of X on Gal(L/K).

• For a bigger extension L' ;2 L ;2 K) and a character X of Gal(L/K) we have

L(8, X) = L(8, X).

with X the character of Gal(L' / K) identified with X.

25
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These properties are well known and used extensively when studying Artin L-series.
They also give the following useful corollary:

Corollary 2.2. Letting X vary over the nontrivial irreducible characters of Gal(E/ F)
we have

(E(S) = (F(S) II LE/F(s, X)x(l).

x

Proof Consider Gal(E/E) as a trivial subgroup of Gal(E/F). This subgroup can
only afford one character, the principal character XO. On Gal(E/F) it will induce
the character of the regular representation: Xreg - L: X(l)X. Then L(s, Xreg)
L(s, Xo) = (E(S), and (2.4b) of Theorem 2.1 gives us the right hand side. 0

2.2 Cohomology

Definition of Cohomology

Let C be a sequence of abelian groups or modules en connected by group homo­
morphisms dn : en -----+ en+! (also called boundary operations) as shown below:

vVhen dn
0 dn - 1 = 0 for all n ;:::: 1 we say that C is a cochain complex. It is clear

that im(dn- 1) ~ ker(dn), and if the two are equal the sequence is exact at en. In a
sense, cohomology measures the 'exactness' of this chain at each step. We give the
following definitions:

• Let zn(c) = ker(dn) for n ;:::: O. The elements of zn(c) are called n-cocycles.

• Let Bn(C) = im(dn- 1 ) for n ;:::: 1 and let BO(C) = 1. The elements of Bn(c) are
called n-coboundaries.
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We now define Hn(C) as the quotient group zn(C)jBn(C). The collection of Hn(C)
are called the cohomology groups of C. If C is exact at some en, Hn(c) is just the
trivial group.

2.2.1 Group Cohomology

Let G be a group and A a G-module. As usual, let AG denote the set of elements in
A fixed by G. We can then consider A 1----7 AG as a functor from G-modules to abelian
groups, sending G-module homomorphisms to abelian group homomorphisms. This
functor is left exact; a short exact sequence of G-modules

will induce an exact sequence

I

(2.5)

which does not, in general, terminate with a surjective map. In this case we can
construct a cohomological extension of the functor. The right derived functors thus
obtained are denoted Hn(G,A) with HO(G,A) = AG and are called the cohomology
groups of G with coefficients in A.

The right derived functors are obtained using projective resolutions. We begin by
noting that AG can be identified with Homa(Z, A), the group of G-module homomor­
phisms from Z (upon which G acts trivially) into A. A projective resolution of Z (as
a G-module) is an exact sequence

of projective G-modules. Taking the set of G-module homomorphisms from the res­
olution into A will induce a sequence
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E ~ ~o------+ HomG(Z, A) ------+ HomG(Po, A) ------+ HomG(P1 , A) ------+ ••.

heading in the other direction. We note some important properties of the sequence.
First of all, the first four terms

are exact ([5, p. 393]), giving us the following:

Secondly, although the rest of the sequence may not be exact, it is a cochain
complex ([16, p. 11]). Let Kn = HomG(Pn, A) for n ?: o. Replacing HomG(Z, A)
by zero will not affect the cochain property of the sequence, and so we construct the
cochain lC:

The cohomology groups of this cochain are the right derived functors we desire.
Let Hn(G, A) = Hn(lC) and note that HO(lC) = ker(dO) rv AG as desired. The
cohomology groups Hn (G, A), along with connecting homomorphisms on, allow us to
extend the sequence given in (2.5) to a cohomology sequence which is exact:
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One of the important facts about the cohomology groups Hn(G, A) is that they
are independent of the chosen resolution. We now present the 'standard resolution',
a relatively simple construction allowing us to explicitly compute these groups.

Let Pn be the free Z-module with basis G x ... x G (with n + 1 factors). It is a
G-module under the action g. (go, gI, . .. ,gn) = (g. go, g. gI, .. . ,g' gn). As before, let
Kn = HomG(Pn, A). We can then show the following:

• KO = HomG(G, A) rv A

• For n > 1, Kn is the collection of all maps from Gn (n copies of G) to A.

The elements of K n are known as 'inhomogeneous cochains' and form a cochain
complex with the connecting homomorphisms dn : Kn -t Kn+l given by the following;

i=n
+L (-1)i f (gI' ... , gigi+1, ... ,gn+1)

i=I

i

I
k

(2.6)

This is known as the standard complex, from which we can explicitly compute the
cohomology groups Hn(G, A) of G with coefficients in A. To demonstrate, we will
compute the 'zeroth' and first such groups.

The 'zeroth' group HO(G, A) is simply ker(dO). This is a subset of KO, which we
identified with A. Then for f E KO, f = a for some a E A and (2.6) gives us
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for all g E G. The kernel of this homomorphism is clearly the elements of a fixed
under G. In other words, HO(G,A) = AG, as expected.

To compute the first cohomological group, we must look at the l-cocycles. They
are in the kernel of the map

(d1f)(g, g') = g . f(g') - f(g . g') + f(g).

For f a l-cocycle, the equation above is equal to zero, and so f (g . g') = g . f (g') +
f(g), which is called a crossed homomorphism. The l-coboundaries are functions
which obey f (g) = g. a - a for some a E A, as shown in the computation of HO (G, A).
Consider the case when G acts trivially on A. In this case the crossed homomorphisms
are actually just homomorphisms, and so ker(d1 ) = Hom(G, A). Furthermore, the
only l-coboundary is the zero function, and so H1(G, A) = Hom(G, A) whenever G
acts trivially on A.

We will write Hn(G, e) when we wish to discuss the cohomology groups of G
without specifying a G-module.

2.2.2 Galois Cohomology

Of special interest is the cohomology of Galois groups. Let F be a field with
separable closure F and let GF = Gal(F/ F) be the absolute Galois group of F.
Then the groups Hi (GF, .) are called the Galois cohomology groups of F and denoted
Hi(F, e).

We assume F to be a number field and fix p a prime. Let jlpm denote the group
of pm-th roots of unity and /£::,; the n-fold tensorproduct of this group. Define

and
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Letting GF act diagonally on fJ,::;, we wish to examine the Galois cohomology
group

consisting of the elements of fJ,:::;' invariant under Gal (F(fJ,poo )/ F). Let ( be a primitive
pm-th root of unity and suppose a E GF acts on ( as a (() = (a for some a E Z. To
find the order of HO(F, Qp/Zp(n)) we note that

and so a acts on fJ,::; in the same way that an acts on fJ,p1n. Then fJ,::; is fixed under
Gal(F(fJ,p1n)/F) precisely when the order ofthis group divides n, and taking the limit
we have

Finally we define

wn(F) = IHO(F,Q/Z(n))1 = II IHO(F,Qp/Zp(n))J.
p
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We now introduce etale cohomology, developed by Alexander Grothendieck in
order to prove the Weil Conjectures. Instead of groups and modules, etale cohomology
is defined in terms of schemes and sheaves.

We are interested in the etale cohomology groups HJt(OF[~],Jl::::) of the scheme

spec OF[~] with values in the etale sheaf Jl::::' (For brevity we will write O~ for
OF[~] from now on.) These can be identified with Galois cohomology as follows:

Let n~) be the maximal algebraic extension of F which is unramified outside primes
above p and infinite primes. Let G~) denote the Galois group of this extension,
G~) = Gal(n~) / F). We call Hi (G~), .) the Galois cohomology groups of F with

restricted ramification. Then the etale sheaf Jl:::: can be viewed as a G~)-module

with diagonal action and we identify HJt(O~,Jl::::) with Hi(G~),~l::::).

Following the conventions set earlier, we define the p-adic etale cohomology groups

and

The etale cohomology groups are defined for a prime p. We wish to consider them
as p-parts of a 'global' cohomology and there are two candidates: Algebraic K-Theory
and motivic cohomology. Providing the Bloch-Kato conjecture holds, then for i = 1,2
there are isomorphisms

up to 2-torsion. Of the two, motivic cohomology provides the correct 2-part for etale
cohomology: for all p there are isomorphisms

32



M.Sc. Thesis - Darren Gray McMaster - Mathematics and Statistics

(2.7)

It is believed that the Bloch-Kato Conjecture has been proven by Rost and Voevodsky,
though the full proof has not yet been published. If we don't assume Bloch-Kato, we
can still construct a global model for i = 2 by defining

H 2
( OF, 7l (n )) = IT H~ (O~, tlp (n ))

p

and replacing motivic cohomology by this construction in the remainder of the paper.

We will mostly be working with the 2nd etale cohomology groups Htt(O'p,71p(n))
for odd p and n ~ 2. An important result from [1] and [21] is that these groups are
finite for all p and trivial for almost all p. As we shall see, there is a relationship
between the order of these groups and special values of Artin L-functions.

We also note that the groups H2t(O'p, Qp/71p(n)) are exactly the Galois groups
HO(F, Qp/71p(n)) discussed earlier.

2.3 Lichtenbaum

Let E / F be a finite abelian extension of totally real number fields with Galois
group G. Let p be an odd prime not dividing the order of G. The action of G on E
gives a 7lp[G]-module structure to Htt(Ok, 7lp(n)). If !vI is any 7lp[G]-module, then
!vI can be written as the direct sum of eigenspaces e¢!vI where ¢ runs through the
irreducible Qp-characters of G. For brevity, we sometimes write M¢ for e¢M.

Let X be an absolutely irreducible component of ¢. There is a relationship between
the Artin L-series of X evaluated at negative integers 1-n and the order of the ¢-th
eigenspace of Htt(Ok, 7lp(n)). There are two cases, depending on whether or not X is
a power of the Teichmiiller character, which we now introduce.

Let ~ = Gal(F(Jlp)/F). The Teichmiiller character

33

f
I



M.Sc. Thesis - Darren Gray McMaster - Mathematics and Statistics

can be defined by its action on a generator a of ~. If ( is a p-th root of unity, then

for some a E (Qp *. The order of ~ divides (p - 1), so a must also be a (p - 1)-th root
of unity in (Q/ and we define w by w(a) = a.

The result we are interested in is given by Lichtenbaum as Theorem 6.1 in [11].
The theorem assumes the Main Conjecture of Iwasawa Theory, as proven by Wiles
in [24]. For the remainder of this paper we write a rvp b when the numbers a and b
have the same p-adic valuation.

Theorem 2.3. (Lichtenbaum & Wiles) Let E/F be an abelian extension of totally
real number fields. Let ¢ be an irreducible (Qp-character of Gal(E/ F) with absolutely
irreducible component X. Let Ox = Zp[X] and let dx = [Ox: Zp]. Then for p an odd
prime not dividing the order of Gal (E / F) and n 2: 2 an even integer we have

if X =I- wn and

otherwise.

We are going to write Lichtenbaum's theorem as one equation, using some results
from [9] and [24]. First we define, for X an absolutely irreducible character of G, the
X-th component of a Zp[G]-module M as
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MX = (iVI ® 0x)X = {x E M ® 0xlg· x = X(g)x for all 9 E G}.

If X is a Qp-character, then this is exactly the X-th eigenspace of M. On the
other hand, if X is a component of an irreducible Qp-character <p, we can show that
NI¢ rv NIX. We can therefore replace IH;t(Ok,Zp(n))¢1 with IH;t(Ok,Zp(n))XI in
Theorem 2.3. We can also look at the X-th component of HO(E, Qp/Zp(n)). This
group is cyclic and therefore has only one non-trivial eigenspace, which is exactly
the wn-th eigenspace. Then IHO(E, Qp/Zp(n))XI = 1 unless X = wn. Using this new
notation we can restate Theorem 2.3 as

We can also consider the theorem from a global standpoint. We noted in (2.7) the
relationship between etale cohomology and motivic cohomology. If we define

HO(E, Q/Z(n))X = IIHO(E, Qp/Zp(n))X
p

then we obtain the global version of Lichtenbaum's theorem, valid for all p not dividing
the order of Gal(E / F) and n 2: 2 even:

For the principal character Xo, by Theorem 2.1 we obtain the zeta function
(F(l-n) on the left hand side. The Xo-th eigenspace of a Zp[G]-module M is ex­
actly those elements fixed under G. Noting that IHO(F, Q/Z(n))1 is just the p-part
of wn(F) and once again assuming that the Bloch-Kato conjecture holds we get

r (1- ) rv IH1(OF, Z(n))1
<"F n p wn(F) .

35



M.Sc. Thesis - Darren Gray McMaster - Mathematics and Statistics

Suppose F is a totally real number field and let n = 2. Taking the product over
all primes p and replacing motivic cohomology by K-Theory gives us the Birch-Tate
conjecture, which holds for all F abelian over Q:

For non-abelian extensions over Q the Birch-Tate conjecture is true up to possible
powers of 2.

We finish with a corollary of Theorem 2.3 regarding the annihilation of the p-adic
etale cohomology groups.

Corollary 2.4. Suppose X is an absolutely irreducible character of Gal(E/F). If p
is an odd prime not dividing the order of Gal (E / F) and n ;:::: 2 an even integer, then

Proof. By Lichtenbaum's theorem we know that the order of H'it (Ok, Zp(n))X is equal
to the p-part of L(l-n, X)dx with a factor of IHO(E, Qp/Zp(n)) Idepending on whether
or not X = wn. As IHO(E, Qp/Zp(n)) I divides wn(E), we know that IH'it(Ok, Zp(n))XI
divides the p-part of wn(E) L(l-n, X)dx. A finite abelian group is always annihilated
by its order, and so it follows that

completing the proof. o

With these tools in place, we are now ready to state and prove the main theorem
of this paper.
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Chapter 3

Main Theorem and Proof

We defined in this paper's introduction the generalized Stickelberger element

eE/F(S) = LL(s,x)ex
XEG

(3.1)

of a finite abelian extension E / F with Galois group G = Gal (E / F). The motivic
Coates-Sinnott conjecture predicts that for n 2: 2, the integralized Stickelberger ele­
ment W n (E)eE / F (l-n) should annihilate H1 (0 E, Z(n) ). Approaching the problem
prime by prime, this reduces to showing that

for each prime p. We look at a particular family of extensions and show (except for
the primes 2 and 3) that this is true.

Main Theorem. Let E / k be an 83 extension of totally real number fields with
quadratic subextension F. Let G = Gal(E/F). For any prime p =1= 2,3 and n 2: 2,
the integralized 8tickelberger element W n (E)eE/F(1-n) is contained in the Zp[G]­
annihilator of the etale cohomology group H;t( Ok, Zp(n)).
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Let A = Gal(Elk). Then A is isomorphic to 8 3 and generated by two elements,
one of order three, which we denote (5, and another of order two, denoted T. This
gives us two subgroups: G = ((5) and H = (T). The field F is exactly the subfield of
E fixed under G. We denote by k1 the subfield of E fixed under H. This is all shown
in Figure 3.1.

Figure 3.1: Extension Diagram

G=(a}

A= a,T)

F

~
k

We are going to need the irreducible characters (over C) of G to define the Stickel­
berger element. In our proof we will also need the characters of A, H and the quotient
group AIG. The methods for finding these characters were explained in Chapter 1
and we summarize the results in Tables 3.1 through 3.4. In each table, we let the
zero subscript denote the principal character and ~ a primitive 3rd root of unity.

All these characters have associated Artin L-functions. While only the L-functions
over the characters of G are used to construct the Stickelberger element, we will
need some of these other L-functions at certain points in the proof. As G and H
are subgroups of A, the characters X, X and <p induce (not necessarily irreducible)
characters of A. Using equation 1.6 on page 12, we find that Ind~x = Ind~x = W2 and
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Ind:;}cp = \[F1+ \[F2. Applying Theorem 2.1 we obtain the following useful relationships:

L(s, \[F2) = L(s, X) = L(s, X) (3.2a)

(3.2b)

(3.2c)

Table 3.1: Characters of A

\[Fa 1 1 1

\[Fl 1 -1 1

\[F2 2 0 -1

Table 3.3: Characters of AIG

~
~
~

The Stickelberger Element

Table 3.2: Characters of G

CEE[2]
Xa 1 1 1

X 1 ~ e
- 1 e ~X

Table 3.4: Characters of H

ITEJ
[;Eli]
~

We can now compute the Stickelberger element given in (3.1), using the characters
of Table 3.2. As these are linear characters over the complex numbers, the group ring
idempotent formula given in equation 1.7 (page 19) reduces to

1
ex = lGT LX(g)g

gEG
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and we can explicitly compute these idempotents for the characters of G:

We now write out the Stickelberger element, evaluated at s = I-n:

BE/F(l-n) = L(l-n, xo)exo + L(l-n, x)ex + L(l-n,x)ex (3.3)

We wish to show that wn(E)BE/F(l-n) annihilates the etale cohomology groups
Htt(Ok,'lLp(n)) for primes p -I- 2,3 and n 2: 2. We will break Htt(Ok,'lLp(n)) into
eigenspaces with respect to the Qlp-valued characters of G and show that each ofthese
submodules is in turn annihilated. There are two cases. When 3 divides (p-l), all the
characters of G are Qlp-valued and H'it,(Ok, Zp(n)) breaks into three submodules. This
is the easy case. When 3 does not divide (p - 1), we can only break Htt(Ok, 'lLp(n))
into two submodules, and showing that they are annihilated takes some more work.

For E and F totally real, the L-functions L(l-n, X) vanish when n is odd. In this
case, the Stickelberger element also vanishes and proving annihilation is trivial. For
the rest of this paper, we will restrict ourselves to even n 2: 2.

3.2 The Easy Case: 3/(p - 1)

We show that this case is part of a larger theorem:

Theorem 3.1. Let E / F by a cyclic extension of totally real number fields of degree q
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andp a prime. Ifq divides (p-1), thenwn (E)BE / F (1-n) annihilates H;t(Ok,Zp(n))
for n ~ 2 even.

Proof. Let G = Gal(E/F). As this extension is cyclic, G is abelian and the set of
characters in G is isomorphic to G itself. We choose a generator X of G. As a linear
character, it sends G to q-th roots of unity, and as q divides (p - 1) we know from
Theorem 1.4 that these values lie in Zp. As H]t(Ok, Zp(n)) is a Zp[G]-module, we
can write it as the sum of simple submodules:

Hit (Ok, Zp (n)) = E9 Hit (Ok, Zp (n))x
xdJ

We need to show that the integralized Stickelberger element

wn (E)BE / F (1-n) = L wn (E)L(1-n, X) ex
XEG

annihilates H]t(Ok,Zp(n)). Due to the orthogonality of the group ring idempotents,
this reduces to showing that wn (E)L(1-n,x) annihilates Htt(Ok,Zp(n))X for each
character X, which is true by 'Corollary 2.4. 0

3.3 The Difficult Case: 3 t (p - 1)

In this case Qp does not contain 3rd roots of unity, so X are X are not Qp-valued.
Then neither are the idempotents ex and ex and the Zp[G]-module Htt(Ok, Zp(n))
no longer breaks into eigenspaces with respect to these characters. We introduce a
new character

¢=x+x
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which, along with the principal character Xo, make up the irreducible Qp-characters
of G. The group ring idempotent associated to ¢ is easily calculated:

Then H'it(Ok, Zp(n)) breaks down into the direct sum of two submodules with
respect to these characters:

We are going to rewrite the Stickelberger element to reflect these new eigenspaces.
The L-functions L(s, X) and L(s, X) are equal by (3.2a) and so

To show that wn(E)BE/F(l-n) annihilates the Zp[G]-module H'it(Ok,Zp(n)), it
suffices to show that each term annihilates H'it(Ok, Zp(n)) separately. Due to the
orthogonality of the idempotents exo and e¢, the problem reduces to proving that
wn(E)L(l-n, Xo) annihilates H'it(Ok, Zp(n))XO and that wn(E)L(l-n, X) annihilates
H'it(Ok,Zp(n))¢. The first statement is true by Corollary 2.4, but the second state­
ment will take some work.

Table 3.2 shows us that the image of X contains 3rd roots of unity. As 3 does not
divide (p-l) then f-l(p-l) does not contain 3rd roots of unity and X cannot be a power
of the Teichmuller character. Then by Lichtenbaum's theorem we know that
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and therefore the order of Hit(Ok,Zp(n))r/> is the power of p dividing L(1-n,x)2.
Unfortunately this isn't good enough; it only shows that L(l-n, X)2 annihilates
Hit (Ok, Zp (n) )r/>. We claim the following:

Proposition 3.2. The Zp[G]-module H;t(Ok,Zp(n))r/> can be written as the direct
sum of two subspaces) each with order equal to the power of p dividing L(l-n, X).

Proof. So far we have only considered H'it(Ok, Zp(n)) as a Zp[G]-module. We can also
look at the action of H on Hit (Ok, Zp(n)); as p =I- 2, Hit (Ok, Zp(n)) will decompose
into a direct sum of Zp[H]-submodules with respect to the idempotents of H given
below:

1
e<p = -(1- T)

2

We claim that these idempotents commute with exo and er/>' which we computed
earlier:

1 2er/> = - (2 - (J' - (J' )

3

The elements T and (J' do not commute. However, as they are the generators of
A, they obey the relation (J'T = T(J'2. It is easy to show that exo and er/> commute with
T, and therefore with e<po and e<p as well.

As a consequence, the eigenspace H'it(Ok, Zp(n))r/> can be decomposed into sub­
spaces with respect to e<po and e<p:
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To prove the proposition, we need to prove that one of these subspaces has order
equal to the power of p dividing L(l-n, X). Because the idempotents commute, we
note that

and will show that the right-hand side has the desired order.

We begin by looking at the Zp[H]-module H;t(Ok,Zp(n))'P. Applying Lichten­
baum's theorem to the extension E / kI gives the order of this group:

(3.5)

We decompose this group into subspaces with respect to eXD and ec/>, giving us the
direct sum

Equations 3.2a and 3.2b show that

L(l-n,ip) = L(l-n, WI) L(l-n, Wz)

= L(l-n, ~I) L(l-n,x)
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and so we can rewrite (3.5) as
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Applying Lichtenbaum's theorem to the extension F / k gives us

We replace L(l-n, ~1) in (3.6) by these terms. Then the order of the subspace
(Htt (Ok, Zp (n)) 'P) if> is the power of p dividing

which we will show reduces to L(l-n,x).

Tables 3.3 and 3.4 show that ~1 acts on F as <p acts on E. We note that

Htt(O'p"Zp(n)) rv Htt(Ok,Zp(n))XO; then Htt(O'p"Zp(n))~h rv (Hit,(Ok,Zp(n))XO)'P
and so

IHtt(O'p" Zp (n))W1 I
I(Htt(Ok, Zp(n))'P)xo I

IHtt(O'p" Zp(n)) Wl i
I(Htt(Ok, Zp(n))XO)'P1 = 1.

Next we prove that IHO(E, Qp/Zp(n))'P1 = IHO(F, Qp/Zp(n))Wll. As E/F is an
extension of totally real fields, E and F(f-Lpoo) are disjoint. Then Gal (F(I-Lpoo )/F) rv

Gal (E(I-Lpoo )/E) and so HO(F, Qp/Zp(n)) r::: HO(E, Qp/Zp(n)), giving us
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IHO(E, Qp/Zp(n)).'P1 = 1.

IHO (F, Qp/Zp(n) )'J!I I

D

We return to the dire~t sum decomposition of Htt(Ok, Zp(n))cP given in (3.4):

As IHtt(Ok, Zp(n)ll f"VpL(l-n, X)2 and I(Htt(Ok, Zp(n))cP)'P1 f"VpL(l-n, X), it fol­
lows that I(Htt(Ok,Zp(n))cP)'P°1 f"VpL(l-n,X) as well. Then both these eigenspaces
are annihilated by L(l-n, X), and therefore the direct sum must be annihilated as
well. With both the easy and difficult case solved, we have completed the proof of
the main theorem of our thesis.
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