Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9037
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCapson, Daviden_US
dc.contributor.authorKuchnio, Peteren_US
dc.date.accessioned2014-06-18T16:45:14Z-
dc.date.available2014-06-18T16:45:14Z-
dc.date.created2011-05-25en_US
dc.date.issued2009-04en_US
dc.identifier.otheropendissertations/4196en_US
dc.identifier.other5214en_US
dc.identifier.other2030991en_US
dc.identifier.urihttp://hdl.handle.net/11375/9037-
dc.description.abstract<p>Optical flow is a well known technique for the measurement of motion in images. Although it has many applications, calculating the optical flow remains computationally expensive and challenging to use in time-critical tasks. This thesis describes an accelerated approach to optical flow computation using foveation and parallel processing on a Graphics Processing Unit (GPU). Foveation reduces the amount of image data to process by mimicking the variable resolution structure of the human visual system. The resulting image data is processed in parallel on a 240 processor GPU to achieve high frame rates on high resolution images. The newly introduced Compute Unified Device Architecture (CUDA) framework is utilized to create an efficient mapping of optical flow and foveation algorithms to the GPU. <br /> The performance and error of the algorithm is characterized using synthetic and real data. The non-foveated optical flow algorithm is found to perform up to 100× faster than a CPU implementation. Foveated optical flow is found to give an additional performance gain of up to 27× over non-foveated optical flow with a corresponding increase in angular error. The results are shown to match or outperform FPGA and non-CUDA GPU implementations. Finally, the application of the described system to real-time control of a robot arm is demonstrated.</p>en_US
dc.subjectElectrical and Computer Engineeringen_US
dc.subjectElectrical and Computer Engineeringen_US
dc.titleAccelerated Optical Flow Computation using Foveated Vision and Compute Unified Device Architectureen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.92 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue