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Abstract 

Optical flow is a well known technique for the measurement of motion in images. Al­

though it has many applications, calculating the optical flow remains computationally 

expensive and challenging to use in time-critical tasks. This thesis describes an accel­

erated approach to optical flow computation using foveation and parallel processing 

on a Graphics Processing Unit (GPU). Foveation reduces the amount of image data 

to process by mimicking the variable resolution structure of the human visual system. 

The resulting image data is processed in parallel on a 240 processor GPU to achieve 

high frame rates on high resolution images. The newly introduced Compute Unified 

Device Architecture (CUDA) framework is utilized to create an efficient mapping of 

optical flow and foveation algorithms to the GPU. 

The performance and error of the algorithm is characterized using synthetic and 

real data. The non-foveated optical flow algorithm is found to perform up to 100x 

faster than a CPU implementation. Foveated optical flow is found to give an addi­

tional performance gain of up to 27x over non-foveated optical flow with a corre­

sponding increase in angular error. The results are shown to match or outperform 

FPGA and non-CUDA GPU implementations. Finally, the application of the de­

scribed system to real-time control of a robot arm is demonstrated. 
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Notation and abbreviations 

Symbols and Definitions 

x 

J(x, t) 
Js 

J(e) 
1/ 

n 

Acronyms 

AAE 
API 
CCD 

CMOS 
CUDA 
DMA 
GPU 
IBVS 
LPT 

SIMD 
SIMT 
SSD 
STD 
RAM 
VLSI 

Scalar 
Vector 
Image frame 
Image Jacobian 
Kinematic Jacobian 
Correlation window radius 
Search window radius 

Average Angular Error 
Application Programming Interface 
Charge-Coupled Device 
Complementary Metal-Oxide Semiconductor 
Compute Unified Device Architecture 
Direct Memory Access 
Graphics Processing Unit 
Image-Based Visual Servo 
Log-Polar Transform 
Single-Instruction Multiple-Data 
Single-Instruction Miltiple-Thread 
Sum-of-squared Differences 
Standard Deviation 
Random Access Memory 
Very Large-Scale Integration 
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Chapter 1 

Introduction 

Measuring the velocity of objects moving in a sequence of images remains a key prob­

lem in computer vision. Calculating the 3-D velocities of moving objects projected 

onto a 2-D visual sensor is dubbed optical flow, and once computed, can be used 

for a wide variety of tasks. Optical flow field are used to segment images, find the 

time-to-collision, estimate motion, compress video, and for autonomous navigation in 

robotics. 

1.1 Problem Definition 

Measuring the optical flow is a computationally intensive problem, and it remains 

challenging to calculate at frame rates suitable for time-critical tasks. The recently 

introduced Compute Unified Device Architecture (CUDA) is a promising approach 

to this problem since it allows a standard Graphics Processing Unit (GPU) to be 

treated as a general purpose parallel computer. The goal of this thesis is to develop 

a set of scalable, parallel algorithms, mapped to the CUDA platform, to accelerate 
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Figure 1.1: Evolution of the computation capability of GPUs versus CPUs. Figure 
reproduced from NVIDIA [1] 

optical flow computation to speeds suitable for time-critical tasks. 

1.2 Parallel Programming on the Graphics Pro-

cessing Unit 

Graphics Processing Units (GPUs) have evolved into parallel, programmable, multi-

core architectures capable of approaching teraflop performance. The market demand 

for real-time, high-definition 3-D graphics has driven the continued expansion of 

GPUs. The number of gigaflops per second that modern GPUs can execute has 

continued to outpace the capabilities of CPUs [1], as illustrated in Figure 1.1. 

2 
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However, the traditional graphics processor software model has limited their appli­

cation to general parallel computation by forcing algorithms to be mapped to graphics 

application programming interfaces (APls) [2]. The first generations of GPUs only 

contained a fixed-function graphics pipeline. As technology advanced, this was re­

placed with a programmable pipeline, where rendering effects could be programmed 

using a set of software instructions called shaders. Shaders have traditionally lacked 

features necessary for more general, non-rendering, algorithms. This typically reduces 

execution speed and limits applications. These restrictions have been lifted by the 

introduction of a new programming paradigm, the Compute Unified Device Archi­

tecture (CUDA) by NVIDIA. CUDA allows GPU hardware, including RAM, cache, 

processors, and registers to be directly accessed using a set of extensions to the C++ 

language. 

CUDA provides a platform that allows significant performance improvements in 

image processing applications [3]. Its introduction has led to rapid growth in research. 

Examples of recent work utilizing this model include biomedical image analysis on 

clusters of GPUs [4], real-time multiple face tracking [5], and fast CT reconstruction 

[6]. Furthermore, Allusse et al. have developed an open-source GPU-accelerated 

framework for image processing and computer vision called GpuCV [7] to facilitate 

continued development on the CUDA platform. Using the parallelism inherent in the 

CUDA model, speedups of more than a factor of 100 over CPU implementations have 

been reported. 

3 



M.A.Sc. Thesis - Peter Kuchnio McMaster - Electrical Engineering 

1.3 Approaches to Optical Flow 

Optical flow methods have played an important role in computer vision research for 

more than two decades. Approaches to measuring optical flow are grouped into four 

main categories: variational, correlation-based, energy-based, and phase-based. A 

comprehensive review of approaches to optical flow is given by Barron et al. [8]. 

These methods can be summarized as follows: 

• Variational: Variational techniques compute the optical flow by minimizing an 

energy functional. Starting with the original approach by Horn and Schunck 

[9] and Lucas and Kanade [10], these techniques have expanded to include ever 

more sophisticated constraints. These include discontinuities in the flow field 

[11] and coarse-to-fine strategies [12, 13]. 

• Correlation-based: These techniques use a region-based matching approach. 

A similarity measure is maximized to find the correct displacement between 

successive image frames. Correlation-based approaches were first investigated 

in [14] and expanded by Camus [15] to include multi-frame matching. 

• Energy-based: The optical flow in energy-based methods is calculated in fre­

quency space by considering the output of several filters, each tuned to a dif­

ferent spatial scale. The response of these filters will ideally be concentrated 

about a plane in frequency space [16]. 

• Phase-based: The generalized use of phase-based techniques was developed by 

Fleet and Jepson [17], expanding upon earlier work by Waxman et al. [18] and 

Buxton and Buxton [19]. In their approach, band-pass velocity-tuned filters are 

4 
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used to decompose the input signal according to scale, speed, and orientation. 

Derivatives of the phase are then computed and used to estimate the velocity. 

Correlation-based optical flow is used in this work since this method is less com­

putationally expensive, is less susceptible to noise, and can generally detect larger 

velocities than other methods. Block-matching methods similar to correlation-based 

optical flow are also ubiquitous in video codecs, including MPEG [20], increasing the 

applicable scope of this work. 

While research into improved and more accurate optical flow techniques has con­

tinued, a seperate stream of research has focused on accelerating optical flow. On 

standard CPUs, optical flow algorithms for time-critical applications have typically 

required high-end workstations [21] or small image sizes and approximation methods 

[15]. Recent work has explored the use of multi-grid methods to accelerate optical 

flow computation on standard PCs [22]. Their work was able to achieve frame rates 

of 18 fps on 316 x 252 resolution images. However, calculation of optical flow in 

real-time on PCs remains impractical for large image sizes. 

Alternate research paths have focused on introducing custom parallel architecture 

in FPGA hardware. This includes the work reported by Diaz et al. [23], Wei et 

al. [24], and Maya-Rueda et al. [25], among others. These approaches have relied 

on two key ideas: effectively pipelining the image processing system and exploiting 

the parallel processing architecture of modern FPGAs. The custom architecture 

approach can have disadvantages, including a lack of scalability, the large amount of 

engineering time required to create the appropriate logic, difficulty in changing the 

implementation rapidly, and cost. 

5 
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To overcome these challenges, several researches have used GPU technology to 

construct optical flow algorithms. An implementation of optical flow using GPU 

shader technology has been studied [26], but was limited by the structure of the 

graphics pipeline. An implementation of variational optical flow on a GPGPU has 

also been reported using multi-grid methods [27]. Very recently, implementations of 

variational (Horn and Schunck) optical flow in CUDA has been reported [28], although 

without foveation and not with correlation-based methods. 

1.4 Approaches to Foveation 

The computational speed of optical flow can be increased further by considering 

foveation, or space-variant vision. Foveated vision emulates biological vision systems 

by maintaining a high resolution region fixed on areas of interest and a lower resolution 

periphery [29]. Applying foveation reduces bandwidth and processing requirements in 

image processing algorithms compared to uniformly sampled images. By effectively 

sub-sampling data, foveation has the potential to further increase performance gain 

in a parallel implementation of optical flow on the GPU. 

A thorough review of foveation methods is given by Yeasin and Sharma in [29]. 

Approaches to computing synthetic foveated images stem from an original exploration 

of the human visual system by Schwartz [30]. Since then, research into foveated vision 

in image processing has split along three paths: computing foveation transforms in 

software [31], computing foveation transforms in hardware (i.e. FPGA and ASIC) 

[32, 33], and the development of custom CCD and CMOS image sensors with non­

uniform resolution [34, 35]. Due to the difficulty in obtaining or manufacturing custom 

image sensors, most researchers have adopted the first two methods. 

6 
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Optical flow techniques with foveation have been explored, including are-formulation 

of the classic variational method [36, 37]. Foveation for the purposes of tracking has 

been studied extensively, including work by Kang and Lee integrating foveation and 

optical flow to track moving objects in surveillance applications using standard PCs 

[38]. Kang and Lee also accounted for the deformation that occurs in space-variant 

coordinate systems [38]. 

1.5 Summary of Contributions From This Thesis 

The work in this thesis builds upon ideas from previous optical flow and foveation 

systems as described above. A novel parallel mapping of correlation-based optical flow 

to CUDA architecture is described, together with a parallel foveation system. The 

effects of the optical flow search parameters on performance are characterized. This 

is followed by a characterization of the error performance on a number of synthetic 

and real-world video sequences. 

A precise list of contributions of this thesis include: 

• A mapping of correlation-based optical flow to the CUDA architecture 

• A mapping of a foveation algorithm to the CUDA architecture 

• A hybrid GPU /CPU method to move the fovea to points of interest in a video 

sequence 

• Characterization of the performance of the non-foveated optical flow, foveation, 

and foveated optical flow algorithms for a variety of image resolutions and search 

parameters 

7 
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• Characterization of the error performance of the above algorithms on synthetic 

video sequences with a comparison to the ground truth 

• Testing of the above algorithms on a real-world video sequence 

• Implementation of a closed-loop controller using the optical flow algorithm to 

control the position of a robot arm 

1.6 Organization of Thesis 

This thesis is organized as follows. In Chapter 2, a review of optical flow and foveation 

theory is given. A description of the CUDA architecture and parallel mappings of the 

optical flow and foveation algorithms to CUDA are discussed in Chapter 3. Details of 

the experimental methodology is provided in Chapter 4, followed by presentation and 

discussion of the results. The thesis is concluded with a summary in Chapter 5. Two 

sets of appendices discuss further details about control theory and robot mechanics, 

as well as the implementation of the robotic experiment discussed in Chapter 4. 

8 



Chapter 2 

Optical Flow and Foveation 

Techniques 

This chapter begins by presenting a brief overview of optical flow techniques. This is 

followed by a more detailed discussion of the correlation-based optical flow method. 

Next, foveated vision is discussed and the chapter concludes with a detailed account 

of the log-polar transform, a common technique for producing foveated images. 

2.1 Optical Flow 

2.1.1 Overview of Optical Flow 

When an object moves in the field of view of a camera, its motion causes a corre­

sponding change in the image. To illustrate this effect, conside the point P, moving 

with velocity ii, in Figure 2.1. The projection of P onto the image plane, Pi, will 

9 
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Figure 2.1: Projection of a point and motion-vector to the image plane. 

therefore move by an amount given by the vector Vi. The collection of all such pro-

jected vectors in the image forms the motion field. The recovery of the motion field 

from a set of images is called the optical flow. A representative optical flow field, 

resulting from translating 2-D squares, is shown in Figure 2.2. 

Several assumptions must be made when calculating the optical flow. The first is 

the brightness constancy assumption, which states that the intensity of local regions 

in the image plane are approximately constant between video frames. This can be 

expressed more formally as [39]: 

I(x, t) ~ I(x + ax, t + at) (2.1) 

Where I(x, t) is the image intensity function and ax is the displacement of an 

image region at time t. 

10 
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Figure 2.2: Optical flow field for a simple translating square 

Second, for optical flow to correspond exactly to image motion, objects in the 

field of view must have Lambertian surface reflectance1 and their motion must be 

pure translational motion parallel to the image plane. While these conditions are 

rarely satisfied in a full scene, they are often locally satisfied. The degree to which 

these assumptions are met partly determines the accuracy of the resulting optical 

flow field [39]. 

Once computed the optical flow field has numerous applications. This includes 

IThe apparent brightness of light scattered by a Lambertian surface, as seen by an observer, is 
the same regardless of the observer's viewing angle. 
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motion estimation, motion segmentation, structure from motion, and video com pres-

sion, among others. Optical flow is also widely used in robotics for collision detection, 

visual odometry, and navigation [40]. Optical flow for navigation has also recently 

garnered wide attention for navigation purposes in Unmanned Aerial Vehicles (UAVs) 

[41] 

2.1.2 Variational Optical Flow 

Variational methods for calculating optical flow remain popular in the computer vi-

sion community and continue to be an active area of research. The original classic 

algorithm proposed by Horn and Schunck is detailed in this section, followed by a dis-

cussion of the computationally simpler correlation based methods and the reasoning 

for choosing correlation-based methods for CUDA implementation in this work. 

2.1.3 Horn and Schunck Method 

The Horn and Schunck method is an iterative variational technique. The key assump-

tion of the technique is that the optical flow varies smoothly. Therefore, this method 

is not optimal for finding flow patterns with discontinuities. To find the optical flow 

vectors, a term defining the smoothness error is formulated and minimized. The first 

step in the derivation of the method begins by considering the brightness of a point 

in an image at time t, denoted by E(x, y, t). As the image moves, the brightness of 

each point is held to be constant. This is known as the brightness constraint. This 

can be expressed as: 

dE =0 
dt 

12 
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By applying the chain rule to the above expression [9], an expression relating the 

derivative of E to changes in x and y is obtained. 

oEdx oEdy oE 
ox dt + oy dt + at = a (2.3) 

Allowing u = dx/dt and v = dy/dt and Ex, Ey, and Et equal the three par-

tial derivatives, the above equation can be rewritten as a linear equation with two 

unknowns, u and v [9]. 

(2.4) 

The next step is to define a term that measures the smoothness of the optical flow. 

The smoothness can be characterized by the square of the magnitude of the gradient 

of the optical flow [9] 

2 = (ou) 2 (ou) 2 (ov) 2 (ov) 2 
Ec Ox + oy + Ox + oy (2.5) 

The error to be minimized can then be expressed as [9]: 

(2.6) 

In the above expression, a 2 is a regularization parameter. Applying the calculus 
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of variations, the above expression can be rewritten as [9]: 

(2.7) 

(2.8) 

Horn and Schunck simplify the above equations by introducing an approximation 

of the laplacian given by [9] 

(2.9) 

(2.10) 

The local averages, u and v are computed as a weighted sum of the neighbouring 

points: 

1 
u' 'k=-(U' l'k+ U ' '+lk+ U '+l'k+ U " 1k)+ 't,J, 6 '/;- ,], 't,J, 1, ,J, 2,J- , 

1 
12 (Ui-1,j-1,k + Ui-1,j+1,k + Ui+1,j+1,k + Ui+1,j-1,k) (2.11) 

1 
v' 'k = -(v' 1 'k + v' '+1 k + V'+l 'k + v' , 1 k)+ 't,J, 6 1,- ,1, 't,J, 1. ,J, 2,J- , 

1 
12 (Vi-1,j-1,k + Vi-1,j+1,k + Vi+l,j+1,k + Vi+1,j-1,k) (2.12) 

Using the Laplacian approximation, the equations to be optimized can be rewrit-

ten as: 

(a? + E~)u + ExEyv = (o?u - ExEt) 

ExEyu + (a? + E;)v = (o?v - EyEt) 

14 
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The above equations can be solved by using the method of Lagrangian multipliers. 

The full derivation is not shown here, however the interested reader is directed to the 

original paper by Horn and Schunck [9] for a complete treatment. The final solution 

then takes the form: 

(E; + E;)(u - u) = -Ex (Exu + Eyv + Et) 

(E; + E;)(v - v) = -Ey(Exu + Eyv + Et) 

(2.15) 

(2.16) 

This equation is prohibitively expensive to solve directly, therefore iterative meth­

ods are used. The above equations can be discretized using the Gauss-Siedel method, 

which gives the following iterative solution [9]: 

un
+1 = un - Ex(Exun + Eyvn + Et)/(o? + E; + E;) 

vn
+1 = vn - Ey(Exun + Eyvn + Et)/(o? + E; + E;) 

(2.17) 

(2.18) 

The Horn and Schunck method in the above form can be used to compute the dense 

optical flow field of a sequence of images. The next section details a computationally 

less expensive, but less accurate method: correlation-based optical flow. 

2.1.4 Correlation-Based Optical Flow 

In correlation-based optical flow, the similarity between a block around each pixel in 

the current video frame, I (t), and a series of blocks in the next frame, I (t + dt), is 

maximized to find the correct pixel motion. More precisely, a (211 + 1) X (211 + 1) sized 

block of pixels in the current frame, I (t), centred at pixel (x, y) is extracted. This 

pixel block is designated as Pl' In the next frame, I(t + dt), there are (2n + 1) x 
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Frame I(t) Frame I(t + dt) 

P1 ~ 

P2 1 
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.. .. 
n 

Figure 2.3: Illustration of correlation-based optical flow 

(2n + 1) possible displacements that the pixel, (x, y), could have moved. For each 

displacement, a (2v + 1) x (2v + 1) sized pixel block, designated as P2 , is extracted 

from frame I(t + dt) and compared to Pl' 

The pixel patch P2 that maximizes the similarity measure corresponds to the 

displacement of the pixel between the two frames. The parameter v corresponds to 

the correlation window radius and n is designated as the search window radius. This 

procedure is illustrated in Figure 2.3. 

Normalized cross-correlation and sum-of-squared differences (SSD) are conven­

tional choices for similarity measure. SSD was chosen in this study due to its lower 

computational cost. The SSD match strength is calculated as: 

v v 

M(x,y, dx, dy, t) = L L(I(x + i,y + j, t) 
j=-vi=-v 

- I (x + dx + i, y + dy + j, t + dt) )2 (2.19) 
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Where (x, y) is the image coordinate in frame I(t) and (dx , dy) are the set of 

(2n + 1) x (2n + 1) possible displacements around (x, y). The pixels displacement is 

taken to be the set of displacements (dx , dy ) that minimize the SSD. 

2.1.5 Horn and Schunck versus Correlation Methods 

Variational techniques, such as the Horn and Schunck method, have unique ad­

vantages and disadvantages for optical flow computation compared to correlation 

based techniques. First is speed of computation. Variational techniques tend to 

be more computationally expensive than correlation based techniques. The Gauss­

Siedel method, especially, can converge slowly. Although faster numerical techniques 

have been applied to the problem [22], more computation is still required than with 

correlation-based methods. Since the goal of this work is to develop the fastest possi­

ble optical flow implementation, suitable for time-critical tasks, the use of correlation­

based methods is an advantage in meeting this goal. 

Variational techniques, however, are more accurate than correlation-based tech­

niques. Barron et al. [8] tested the accuracy of a multitude of optical flow tech­

niques on synthetic video sequences. They found that for the standard test sequence 

'Yosemite fly through , , the Horn and Schunck method calculated the optical flow vec­

tors with an average angular error (AAE) of approximately 2 degrees, while the 

correlation-based method had an average angular error of approximately 14 degrees. 

However, the correlation method can be improved by adding interpolation to the 

calculation. Accuracy in the determination of the optical flow vectors was not the 

prime concern of this work, however the structure of the developed optical flow ker­

nel, discussed in Chapter 3, is amenable to replacing the correlation method with a 

17 
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variational technique if more accuracy is desired. 

Variational techniques are not well-suited to calculating optical flow vectors with 

larger velocities, where pixels can move several units between frames. This problem 

is solved by using a coarse-to-fine image pyramid, however this adds even more com­

putational complexity. Correlation-based methods, on the other hand, are naturally 

suited to finding larger velocities simply by increasing the search window radius, n. 

Another important advantage of correlation-based methods is performance with noise. 

Overall, correlation techniques are less susceptible to noise in the image than varia­

tional techniques. This was an important factor in this work since the overall goal 

of the project was to develop a system capable of working on live video feeds, which 

can often have significant noise in the input. For the above reasons, correlation-based 

methods were chosen over variational methods. 

2.2 Foveation 

2.2.1 Overview of Foveation 

The human retina contains two distinct regions in terms of resolving power. The 

retina has a high-resolution region, the fovea, and a lower resolution periphery. This 

structure results from the fact that photoreceptors (rods and cones) are non-uniformly 

distributed in the retina [42, 43]. The density of cones plays an important role in 

determining the resolving power of the human eye. 

When a human observer gazes at a scene, the region around the eye's point of 

fixation (or foveation point) is projected onto the fovea and sampled with the highest 

density. The sampling density decreases rapidly with distance from the fovea [42, 43]. 
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As a result, a variable resolution image is transmitted to the high level processing 

centres of the brain. 

The human visual system is therefore space-variant in acquiring and processing 

information. This structure is common in biological systems and allows organisms to 

maintain a wide field of view while focusing the highest-resolution part of the eye on 

regions of interest [30]. This is in stark contrast to traditional digital imaging systems 

that sample images on a regular, rectangular grid. This approach has typically been 

taken due to its intuitivness and simplicity of image acquisition, storage, transmission, 

and computation. 

Foveation, or space-variant vision, can be emulated by image processing systems. 

Foveation reduces the data bandwidth and processing requirements [32] for vision 

algorithms, making it an attractive approach for computationally intensive applica­

tions. 

2.2.2 Approaches to Foveated Vision 

In the human visual system, foveated vision is part of the structure of the eye [30]. 

Such a structure is challenging to implement in CCD and CMOS sensors due to 

the nature of VLSI semiconductor processing, which is suited to rectangular, regular 

features [32]. Space-variant sensors have been manufactured [34, 35], but remain more 

expensive and less readily available than commercial, off-the-shelf, digital cameras. 

For this reason, most foveated vision systems implemented in the literature utilize 

a camera with uniform resolution and convert the data to a foveated image with 

software or hardware algorithms [31]. Two types of foveal mappings are commonly 

used: 
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• Log-Polar [30]: A cartesian image is mapped into a series of concentric rings, 

each with decreasing resolution inversely proportional to the distance from the 

fovea. 

• Exponential Cartesian [44]: A cartesian image is mapped into uniformly shaped 

rexels. The rexels in successive rings are related in size by a power of two. 

Log-polar mapping is widely used in the literature, as well as this study, since 

it has the advantage of being rotation and scale-invariant as well as maintaining 

similarity the biological retinal model. 

2.2.3 The Log-Polar Transform 

The log-polar transform (LPT) is a conformal mapping from cartesian space, (x, y), 

to log-polar space, (u, e), given by [31]: 

P = V(x - Xjov)2 + (y - Yjov)2 

u = In(p/ Po) 

e = arctan( Y - YjOV) 
X - Xjov 

(2.20) 

(2.21) 

(2.22) 

In the above set of equations, p is the radius, Po is the radius of the fovea, u is 

the log scale of the radius, (x, y) are the cartesian image coordinates, and (Xjov, Yjov) 

are the coordinates of the center of the fovea. The topology of the log-polar fovea is 

shown in Figure 2.4( c), as well as a representative example of a log-polar transform 

image in Figure 2.4(a) and (b), respectively. 

The log-polar transform is widely used in part due to its favourable properties. As 

mentioned earlier, the LPT is scale and rotation invariant. This property is illustrated 
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x theta 

(a) Cartesian Image (b) Log-Polar Transform image 

( c) Foveal Topology 

Figure 2.4: a) Original cartesian image. b) Log-polar transform of a). c) Illustration 
of log-polar foveal topology. 
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in Figure 2.5, which shows the scaling and rotation of a bar [29J. Rotation of an object 

results in a shift in 0 in the transform and a change in object scale results in a shift 

mu. 

To verify these properties, consider scaling an image by a factor, S, which can be 

written as: 

p expjo --7 S P expjo (2.23) 

Applying the LPT yields: 

log(Sp expjO) = log S + log p + jO (2.24) 

Similarly, adding a rotation of angle a, which can be written as: 

(2.25) 

Applying the LPT yields: 

log(pexpj(O+a)) = logp + j(O + a) (2.26) 

The scale and rotation invariance properties of the LPT are an advantage in several 

situations. They simplify the calculation of radial optical flow of approaching objects, 

which can be exploited to quickly estimate the time to impact. These properties also 

simplify shape and object recognition since shape and orientation variance problems 

are eliminated [29J. 

The primary disadvantage of the log-polar transform is that it complicates image 
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, 

-

Figure 2.5: Illustration of rotation and scale invariance properties of the log-polar 
transform 
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translation. In general, a simple translation in cartesian space results in a deforma­

tion in log-polar space [29]. This result breaks the spatial neighbourhood structure 

required by many traditional image processing techniques. The need to generate new 

image processing methods has slowed the acceptance of the foveated vision model. 

2.3 Optical Flow in the Log-Polar Domain 

Due to the translation property of the log-polar transform discussed above, the op­

tical flow is more challenging to compute in log-polar space. One must be aware of 

the deformation that occurs during translation when analyzing the movement of a 

region in a space-variant coordinate system. An illustration of log-polar deformation 

resulting from a cartesian translation is shown in Figure 2.6. 

The opposite effect seen in Figure 2.6 occurs when a rectangular search window 

in log-polar space is used with correlation-based optical flow. Shifting a rectangular 

window in log-polar space will result in an annular segment shifting along the (r, e) 

direction in cartesian space. 

A motion vector found using optical flow in log-polar space will have components 

of (du, de). Vectors in this coordinate system are difficult to use for most applica­

tions, such as motion segmentation or comparison to a ground-truth. Following the 

approach of Kang and Lee [38], this difficulty is solved by transforming each motion 

vector at each (u, e) coordinate to cartesian coordinates. The transformation begins 

by obtaining the radius, r, from the initial, U o , and displaced, uf, log radius values: 

ro = poexp(uo) 

rf = poexp(uf) 
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Figure 2.6: Illustration of deformation in the log-polar space (bottom) when trans­
lating an object in cartesian space (top). 

The initial and final (x, y) components are then calculated as shown below: 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

Vectors in this form are now ready to be utilized in subsequent processing steps. 
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Chapter 3 

Algorithm Implementation on 

Compute Unified Device 

Architecture 

In this chapter, an overview of the Compute Unified Device Architecture and the 

constraints it places on algorithm design are discussed. Details of the mapping of 

foveation, optical flow, and foveation point selection algorithms to CUDA follow. 

The chapter concludes with an overview of the overall system design used to conduct 

the experiments in Chapter 4. 
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Streaming Multiprocessor (SM) 
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I Read-only Ca ched Memory 

Global Memory 

Figure 3.1: Diagram of CUDA architecture organization. Figure courtesy of Michael 
Kinsner. 

3.1 Overview of Compute Unified Device Archi-

tecture (CUDA) 

The modern GPU is a multi-core, single-instruction multiple thread (SIMT) proces­

sor designed for fast floating point calculation. The architecture in NVIDIA Geforce 

GPUs consists of a multitude of multiprocessors that each encapsulate a set of pro-

cessors, on-chip shared memory, and an instruction unit, as illustrated in Figure 3.1. 

Each processor has access to on-board RAM (global memory) and on-chip shared 

memory. The GPU used in this work contains 20 multiprocessors, each with 12 pro­

cessor cores, for a total of 240 SIMT processors [1]. SIMT architecture is similar 

to single-instruction multiple-data (SIMD), with the added ability to execute either 

single scalar threads or cooperative parallel threads [1]. 
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3.1.1 GPU versus CPU Organization 

/:0/ 
/Control 
/ ' 

, . '/ 

Cache 

DRAM 

CPU 

~ 
~ 
~ 
~ 
~ 
I DRAM I 

GPU 

Figure 3.2: GPU versus CPU architecture 

The GPU is specially suited to perform computationally-intensive, highly parallel 

tasks. Its capabilities have evolved from the need to render graphics at high frame 

rates for the gaming market. The GPU accomplishes this thanks to an architec-

ture that devotes more transistors to data processing rather than data caching or 

controlling program flow [1]. A schematic of the difference between GPU and CPU 

architecture is shown in Figure 3.2. GPU architecture makes the device best suited 

to algorithms that access data elements in parallel with a high ratio of arithmetic 

to memory operations (arithmetic intensity). This requirement stems from a lack of 

extensive control logic and cache structures. 

3.1.2 GPU Programming Model 

Each multiprocessor manages and executes instructions in sets of 32 threads. Each 

set is called a warp. All threads within a warp start at the same program address, 

but are then free to branch and execute independently of one another. The GPU is 
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designed to execute thousands of lightweight threads with minimal overhead, which 

allows very finely scaled parallelism to be built into programs, for example, launching 

a thread for each data element to be processed [1]. 

Threads launched on the GPU are organized into groups called thread blocks, 

with a maximum of 512 threads per block. Each warp executes the same common 

instruction. The most efficient case occurs when all threads in a warp follow the 

same execution path. When threads in a warp diverge (as occurs during a condition 

statement), the warp serially executes each possible branch. The threads not active 

during the branch are disabled. Only when all paths have been completed do all the 

threads converge and continue on the execution path. Therefore, divergence within a 

warp slows computation speed [1]. 

Blocks of threads in general cannot communicate with one another. Only threads 

in the same block can communicate by using shared memory. The next unit of organi­

zation in CUDA is called a grid. A set of thread blocks forms a grid. CUDA programs 

that launch a grid of thread blocks are called kernels. To simplify algorithm design, 

threads can be launched in one-dimensional, two-dimensional, or three-dimensional 

thread blocks. This simplifies indexing when working with elements of vectors and 

matrices. 

3.1.3 Calling Kernels 

An example of a CUDA kernel invocation is shown in the source code listing below. 

The kernel in this example is called logpolartrans_gpu. Calling a kernel is very similar 

to calling a regular C++ function with the extra addition of two parameters within 

the < < < > > > brackets. The first parameter, gridSize specifies the number of thread 
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blocks to launch while blockSize specifies the number of threads in each block. 

1 logpolartrans_gpu «<gridSize, blockSize»> (arguments) j 

CUDA includes additional types to facilitate the creation of 1D, 2D, and 3D blocks 

and grids. For example a thread block with 16 x 16 threads and a grid with 128 x 128 

blocks can be created with the variables: 

1 dim3 blockSize (16, 16); 

dim3 gridSize (128, 128); 

A CUDA kernel is declared in a similar manner to a standard C++ function. For 

example, the log polar transform kernel invoked above would be declared as: 

II Kernel declaration 

2 __ global __ void logpolartrans_gpu(float *d_cart, float *d_Iog I int W, int padsize I unsigned long 

logSize 1 float fovea_ex I float fovea_cy, float rho_o, float u_min I float du lint numRings) 

{ 

4 (Kernel code) 

A CUDA kernel is therefore specified by using the __ globaL identifier. It should 

be noted that all global CUDA functions, as shown above, must be declared as void. 

In order to return values back to the host, the memory must be manually copied from 

the GPU's RAM to system RAM using a memcpy operation. 

Each of the blocks and threads executed by a kernel is given its own block ID 

and thread ID. These are stored in 3-component vectors stored as built in variables 

named blockIdx and threadIdx, respectively. The thread and block IDs are used inside 

the kernel to determine what data each thread should operate on. As an example, 

consider a kernel that performs a simple thresholding operation on a 2D image. Each 

thread should access a single pixel in the image, compare it to a threshold, and write 

the thresholded pixel back to memory. To solve this problem, a 2-D thread and block 

structure can be used to simplify addressing. Le.: 
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1 __ glo b al __ void threshold (float * d_inputIMG [WI [HI, float * d_outputIMG [WI [HI, int threshold) 

{ 

3 int i = blockDim. x * blockldx. x + threadIdx.x i 

int j = blockDim. y * blockldx. y + threadldx. y; 

5 

if (d_inputIMG [i I [j I > threshold) 

7 d_outputIMG [i I [j I = d_inputIMG [i I [j I ; 

9 

void main (void) 

11 dim3 gridSize (40,30); II process a 640x480 image 

dim3 blockSize (16,16); 

13 

II Kernel invocation 

15 threshold «<gridSize, blockSize »> (d_inputIMG, d_outputIMG, threshold); 

In the above example, blockDim is a 3 component vector that specifies the size of 

each thread block. The values of the parameters in the above example were chosen 

arbitrarily to illustrate the concept of thread indexing. 

3.1.4 Algorithm Design Constraints 

The GPU architecture imposes unique constraints on the design of algorithms. To 

maximize use of the available processors and hide memory access latency, CUDA 

algorithms must use a large number of threads per block (> 192) and a large number 

of blocks (> 64). Resource usage per thread must be low, due to the limited number 

of available registers and shared memory (16 KB per multiprocessor). The thread 

block size should also be a multiple of the warp size (i.e. a multiple of 32) [1]. 
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3.1.5 CUDA Memory Access 

CUDA provides several types of memory access methods: global memory, shared 

memory, texture memory, and constant memory. Global memory refers to the off­

chip RAM on the graphics card. Global memory access is not cached and there is a 

300 clock-cycle latency between requesting and receiving data. Global memory access 

can be sped up by coalescing access, which allows a half-warp of threads to read a 

block of memory simultaneously (i.e. in one transaction) [1]. 

In order for coalesced memory access to occur, a half-warp of threads must read 

a continuous block of memory. Furthermore, the start address of the read has to be 

a multiple of the warp size. For example, a half-warp reading 16 continuous memory 

locations beginning at memory address 128 would result in coalescing, but if the read 

began at address 129, coalescing would no longer occur and the memory would be 

read out in 16 transactions. Coalescing will still occur even if not all threads read a 

memory location, as long as the alignment requirements are met. Memory coalescing 

is illustrated in Figure 3.3. 

Shared memory is on-chip, and is therefore much faster than global memory. 

Shared memory can be accessed as quickly as a register, and also allows threads 

in the same block to co-operate [1]. These properties make shared memory useful 

for storing commonly accessed data, bypassing the latency associated with global 

memory. Unfortunately, if shared memory access is structured incorrectly, threads 

in a warp can encounter memory bank conflicts. This results in serialized threads. 

Shared memory organization is detailed below. 

Shared memory is organized into equally-sized memory modules, designated as 

memory banks. This organization is used to achieve high-memory bandwidth, since 

32 

I: 



M.A.Sc. Thesis - Peter Kuchnio McMaster - Electrical Engineering 

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 15 

a) 

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 

b) 

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 15 

c) 

d) 

Figure 3.3: Global memory coalescing access patterns. a) and b) result in coalesced 
access while c) and d) do not. 

different memory banks can be accessed simultaneously. A memory-bank conflict oc-

curs when two or more memory requests access the same bank. When this occurs, 

the control hardware splits the memory request into as many conflict-free requests 

as necessary, effectively serializing access and reducing memory bandwidth. When 

data is stored in shared memory, consecutive 32-bit words are assigned to successive 

memory banks. Therefore, if each thread in a warp accesses a different array element 

of type float, bank conflicts will not occur. Fortunately, multiple threads can access 

the same memory bank under certain conditions, thanks to a broadcast mechanism. 
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Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 

a) L-__ ~ ____ -L ____ -L ____ ~ ____ L-__ ~ ____ ~ 
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Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 

Thread 15 

~. ~ 

Bank 
15 

Figure 3.4: Shared memory access without bank conflicts (a and b) and with bank 
conflicts c). d) is an example of broadcasting, which does not result in a bank conflict 

Broadcasting allows a 32-bit word to be read and broadcast to several threads si­

multaneously with one memory request [1]. Examples of conflict-free and conflicted 

shared memory access are shown in Figure 3.4. 

CUDA provides two additional cached, read-only, methods to access global mem-

ory without coalescing: constant memory and texture memory. These methods are 

useful since structuring data access to meet coalescing requirements is often not triv-

ial. Constant memory is cached, therefore a half-warp of threads reads constant 

memory as quickly as if it was a register, unless a cache miss occurs. Texture mem-

ory is likewise cached, where a read from texture memory only accesses global memory 
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on a cache miss, otherwise the data is read from the texture cache. The texture cache 

is organized for data that has 2D spatial locality [1], making it particularly suitable 

for image processing algorithms. 

The above advantages and constraints must be kept in mind when mapping algo­

rithms to the CUDA platform. In general, the best performance is achieved when the 

parallelism of the CUDA platform is exploited for problems with sufficient arithmetic 

intensity. After decomposing an algorithm to a degree that can be implemented in 

parallel, the constraints, in terms of memory access, occupancy, register access, and 

divergence, must be minimized to maintain an efficient algorithm. This procedure 

was employed in the development of the foveation, optical flow, and foveation point 

selection algorithms, as detailed in the following sections. 

3.1.6 CUDA Memory Programming Model 

CUDA kernels are restricted to accessing memory in global and shared memory on 

the graphics card. In other words, they are not able to access host system memory. 

Device memory, in turn, must be manually allocated and copied between the host 

and graphics card. A full discussion of memory managment techniques is provided in 

the NVIDIA CUDA Programming Guide [1], however a brief introduction is provided 

here for completeness. The first example is allocation of 1-D linear global memory 

and is shown in the listing below. It is important to remember that this code will be 

executed by the host. 

flo at * sampleArray; 

2 cudaMalloc((void •• )&sampleArray, 256 * sizeof(float)); II allocate a 256 element array 

Once the CUDA array is allocated, memory can be copied from host to device 

RAM. The next example illustrates this by transferring the contents of a system array 
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to global memory: 

float hostArray [256]; 

2 / / Perform th e memory copy 

cudaMemcpy(sampleArray, hostArray, 256 * sizeof(float) I cudaMemcpyHostToDevice) i 

Once the cudaMemcpy operation has been completed, the data residing in global 

memory can be accessed by any kernels. 

Unlike global memory, shared memory is allocated directly inside a kernel. A 

shared memory array is allocated in the same manner as a regular array, except that 

it is prefaced with a _..shared __ identifier. An example of shared memory allocation is 

shown below: 

1 __ global __ void sharedexample(arguments) 

3 __ shared __ sharedArray [256]; 

The above source code examples provide a brief introduction to the CUDA mem-

ory managment model. The use of each feature will be discussed in more detail in 

the sections below. Full source code listings for the kernels developed in this work 

are also provided in Appendix C. 

3.1.7 Thread Scheduling 

When a CUDA kernel is invoked, the designer specifies the number of threads and 

thread blocks to launch. However, the mapping of the threads to the available proces­

sors is handled by the hardware. In general, a global block scheduler will assign each 

thread block to a multiprocessor as capacity allows. The number of thread blocks 

that can execute on a given multiprocessor is determined by the number of threads in 

a block, required amount of registers per thread, and shared memory requirements. 

The global block scheduler issues thread blocks in a round-robin fashion [45]. The 
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maximum number of thread blocks that can be executed by a multiprocessor is 8, 

and the maximum number of threads that can be executed is 1024 on the current 

generation of hardware. 

Each multiprocessor is responsible for scheduling the execution of its assigned 

thread blocks on an array of FPUs, which the NVIDIA literature refers to as pro­

cessors. As mentioned previously, threads are issued in groups of 32, designated 

as warps. A warp forms the fine-level parallelism in the CUDA model. Execution 

continues until all threads in a kernel have been executed. 

3.1.8 GPU jCPU Concurrency and Streaming 

CUDA programs are written using a set of extensions to the C language. This allows 

serially executed code, operating on the CPU, to operate concurrently with kernels 

launched on the GPU. In CUDA parlance, the CPU is termed the host and the 

graphics card the device. GPU ICPU concurrency can increase execution speed, since 

the CPU can operate or prepare data for a subsequent kernel while a kernel executes 

on the GPU. The exception occurs during memory transfers between the host and 

device. In this case the kernel cannot start until the memory transfer is complete [1]. 

CUDA does provide a mechanism to transfer data to memory concurrently with 

kernel execution through streams. A stream allows memory operations to be broken 

up into a sequence of operations. These operations can then execute out of order or 

concurrently. Unfortunately, streaming asynchronous execution is still in development 

and not all memory transfer operations are currently supported. As of the time of 

this writing, asynchronous memory transfer to texture memory is not yet supported. 

Since the kernels created to solve the foveated optical flow problem rely heavily on 

37 



M.A.Sc. Thesis - Peter Kuchnio McMaster - Electrical Engineering 

Algorithm 1 Log-Polar Transform 

for Pixels in parallel do 
Calculate (p,O) coordinate for current thread 
x = p * cosTable[O] + xfov {Perform inverse LPT} 
Y = p * sinTable[O] + Yfov 
Write pixel from cartesian image to log-polar image in global memory 

end for 

textures, memory streaming was not implement in this thesis. 

3.2 Foveation Algorithm 

To compute the log-polar transform, a thread is launched for every pixel in the LPT 

image, which is of size (NO x NRings) , as shown in Figure 2.4(c). NO corresponds 

to the number of angular divisions and N Rings corresponds to the number of radial 

divisions. For each (u, 0) coordinate in the LPT image, each thread calculates the 

corresponding cartesian coordinates, (x, y) according to the equation: 

p=poexp(u) 

x = pcos(O) + xfov 

Y = psin(O) + Yfov 

(3.1) 

(3.2) 

(3.3) 

The thread then loads this data from global memory and stores it in the global 

memory that corresponds to the LPT image. To increase processing speed, the sine 

and cosine values are pre-computed at program start and stored in constant memory. 

This optimization is possible since the range of 0 values used in the LPT image is 

known a priori. 

The width of the LPT image is padded to be a multiple of the half-warp size 
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(16 threads) for faster performance of the subsequent optical flow algorithm. This 

is done since the optical flow kernel uses a 2-D thread indexing structure to access 

images. Without padding, thread blocks on the edges of the image would have to 

be inactive. This would lead to warp divergence and break global memory storage 

coalescing. These issues are more fully described in section 3.3.1. 

The accuracy of the LPT image is improved by adding the option to interpolate 

the cartesian image when sampling image points. Interpolation is achieved by first 

loading the cartesian image into texture memory. The GPU allows linear interpolation 

to be performed by dedicated hardware on textures, increasing execution speed. 

Pseudo-code for the foveation algorithm is shown in Algorithm 1. The algorithm 

can be summarized as follows. A thread is launched for every pixel in the LPT 

image. The transform is therefore computed in parallel and each thread is associated 

with a (p, e) coordinate. Each thread then performs the inverse LPT to find the 

(x, y) coordinate that corresponds to its (p, e) coordinate. With the (x, y) coordinate 

known, the thread samples the cartesian image and writes the resulting pixel to the 

LPT image in global memory. Full source code for the foveation kernel, along with a 

more detailed explanation of the code is provided in Appendix C. 

3.3 Optical Flow Algorithm 

3.3.1 Thread, Block, and Shared Memory Organization 

To maximize execution speed of the optical flow algorithm, each image (of size 

w x h) is divided into a 2D grid, as shown in Figure 3.5(a). Each block in the grid 

is assigned to a block of threads launched on the GPU. A single thread in the block 
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Figure 3.5: a) Diagram of image subdivison in global memory into parallel thread 
blocks and shared memory loading stage. b) Thread block organization. c) Descrip­
tion of global memory storage coalescing using a shared memory staging area. 
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Algorithm 2 Foveated Optical Flow 

Allocate Shared Memory PI [16] [16] 
Allocate Shared Memory P2 [16+2n] [16+2n] 
Allocate Shared Memory dxStorage [16] [32] I , 
Allocate Shared Memory dyStorage [16] [32] 
Load PI and P2 from Global Memory 
for Pixels in parallel do 

if thread corresponds to Active Pixel then 
for each pixel in P2 do 

for each pixel in PI do 
sum SSD 

end for 
if SSD < previous SSD then 

[1] Calculate origin and end of vector in log polar coordinates 
[2] Transform to cartesian coordinates 

end if 
end for 

end if 
Store displacement in dxStorage and dyStorage 
Synchronize threads 
Write dxStorage and dyStorage to Global Memory 

end for 

computes the motion vector for a single pixel in the image, as shown in Figure 3.5(b). 

Since the comparison pixel patch, PI, has a radius of v, it is necessary to load a 

pixel apron in each block of size v, as shown in Figure 3.5(a), since threads belonging 

to different blocks cannot communicate without resorting to global memory access. 

Each thread block has a set of threads that compute the motion vector, and a set 

that correspond to apron pixels. The threads that calculate a motion vector are 

called Active Pixels. Each thread block has 16 x 16 threads to maximize occupancy 

of the processors and hide memory access latency - therefore there will be 16 - 2v 

Active Pixels per thread block. To process a w x h sized image, (w / ActivePixels) x 

(h/ActivePixels) thread blocks must be launched. 
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Each block loads its corresponding active pixels and apron from frame I (t) into 

shared memory, which functions as a user-defined cache. The thread block also loads 

the corresponding pixels from frame I (t + dt). This region requires an apron of size 

n + v. The shared memory utilization is shown in Figure 3.5(a). It is challenging to 

load the two pixel sets in a coalesced manner because of their differing sizes. They 

are also not typically aligned by a multiple of the warp size with the images base 

address, which is required for coalescing memory access. To overcome this limitation, 

texture memory, which is cached and optimized when 2D locality is present, is used 

to store and access incoming frames. 

Since the threads associated with apron pixels are not active during computation, 

there will be a percentage of idle threads, given by: 

P, _ ActivePixels 
idle - 1- (ActivePixels + 2v) (3.4) 

where in the above equation Active Pixels denotes the number of Active Pixels peT 

TOW in a given thread block (i.e., if v = 2, ActivePixels = 12 for a thread block with 

a width of 16 threads). However, since v is significantly smaller than the thread block 

width, the overhead is not significant compared to the savings in memory access by 

caching pixels in shared memory. The shared memory is accessed in column-major 

order to avoid memory bank conflicts. 
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3.3.2 Match Strength Computation and Deformation Cor­

rection 

Each thread that corresponds to an active pixel (i.e. not including apron pixels) in 

frame I(t) calculates the displacement for that pixel by implementing Equation 2.19, 

for all (2n + 1) x (2n + 1) possible displacements (du, dB). For each displacement, 

the match strength is evaluated. If it is smaller than the match strength of the 

previous displacement, the new displacement value is stored. The displacement with 

the smallest sum-of-squared difference is returned. 

At this stage, the motion vectors are in log-polar coordinates. Prior to imple­

menting motion-segmentation, the motion vectors must be transformed to cartesian 

coordinates, by applying equation 3.3. To reduce register usage and further increase 

execution speed, the intrinsic CUDA function, exp!, is used instead of expo As with 

the log-polar transform kernel, sine and cosine lookup tables in constant memory are 

utilized. 

3.3.3 Output Padding 

The displacement vector must be stored in global memory prior to transfer back to 

the host. Since texture memory is read-only, global memory coalescing must be used. 

Shared memory is used to coalesce memory access, as shown in Figure 3.5(c). The 

storage stage width is a multiple of the warp size (i.e. 32) and the height of the 

number of active pixels in the block. The memory write must start at an address 

that is a multiple of the half-warp size, 16, to the base address. Therefore, a padding 
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prefix, Sp, is added to the pixels to be written, defined by: 

Sp = ((bW - v)bW) - floor[(bW;;)bX]bW (3.5) 

where bW is the thread block width and bX is the block index in the horizontal 

direction of I(t). The remainder of the storage stage is padded with zeros to fill out 

the warp-size multiple requirement. Global memory is written to in two stages, each 

thread storing two pixels. 

Pseudo-code for the foveated optical flow algorithm is provided in Algorithm 2. As 

described previously, the kernel begins by allocating the appropriate shared memory 

for each thread block. Shared memory is allocated for the pixel blocks PI and P2 

as well as for the x and y components of the resulting motion vectors. Once the 

memory is allocated, the appropriate pixels are loaded from frame I(t) and I(t - dt) 

as discussed in section 3.3.1 (i.e. the active and apron pixels are loaded). 

The optical flow calculation begins with a thread launched for every pixel in the 

PI pixel patch. A total of 16 x 16, or 256, threads are launched, although some will 

be idle in the calculation since they correspond to apron pixels. Each thread then 

calculates a motion vector using the correlation method discussed in section 2.1.4. 

Once the motion vector is found, it is transformed to cartesian coordinates and 

stored in shared memory. Once all motion vectors in the thread block have been 

found, they are written to the global memory. As discussed in section 3.3.3, the 

shared memory arrays dxStorage and dyStorage are used to stage a coalesced write 

to global memory, with each writing two pixels. Full source code for the optical flow 

kernel, along with a more detailed explanation of the code is provided in Appendix 

C. 

44 



M.A.Sc. Thesis - Peter Kuchnio McMaster - Electrical Engineering 

3.3.4 Foveation Point Selection 

The foveation point must be updated each frame to maintain the region of interest in 

the highest resolution area of the image. Since foveation is used with optical flow in 

this work, a strategy of maintaining the fovea over areas with the greatest movement 

magnitude was chosen. This is accomplished by thresholding the optical flow vectors 

that fall below a certain displacement magnitude and finding the centroid of the 

origins of the vectors that remain. 

The centroid is found with a combination GPU /CPU algorithm as outlined in 

algorithm 3. A pre-computation step is performed on the GPU. A thread is launched 

for each pixel in the image, divided into blocks of 256 threads. If a thresholded 

pixel exists at that location, its coordinate is transformed from log-polar coordinates 

to cartesian. The (x, y) coordinates are stored in shared memory. At the end of the 

kernel, one thread from the block sums up all of the (x, y) coordinates and the number 

of thresholded points. This data is then returned to the CPU, which computes the 

final centroid. At this step, only the number of points corresponding to the number 

of thread blocks have to be summed to calculate the centroid. 

The algorithm is split up into CPU and GPU portions to reduce the amount of 

data that must be transferred over the PCI-Express bus and utilize the parallelism of 

the GPU. To summarize, each thread block is associated with an area of the image 

for which it computes the local centroid. The local centroids are calculated in parallel 

and stored in global memory. This data is transferred to host RAM where the CPU 

sums the local centroids to return the final value. Full source code for the foveation 

point selection kernel, along with a more detailed explanation of the code is provided 

in Appendix C. 
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Algorithm 3 Foveation Point Selection 

Launch GPU portion of algorithm 
Allocate Shared Memory Xcoords[ThreadsPerBlock] {Store centroid components 
in shared memory} 
Allocate Shared Memory Y coords[TheadsPerBlock] 
for Pixels in parallel do 

Convert current thread index to (u, e) 
Calculate (x, y) from (u, e) 
Calculate magnitude of optical flow vector accessed by thread 
if magnitude > threshold then 

magnitude = 1 
else 

magnitude = 0 
end if 
Xcoords[threadIndex] = x * magnitude 
Y coords[threadIndex] = y * magnitude 
Synchronize threads 
if threadlndex = 0 then {Only one thread sums centroid components} 

for i = 0 to ThreadsPerBlock do 
centroidx = centroidx + X coords[i] 
centroidy = centroidy + Y coords[iJ 
if magnitude> 0 then 

npts + + 
end if 

end for 
end if 

end for 
Return centroidx, centroidy, and npts to CPU 
for i = 0 to i = NumB locks do 

centroidxcpu+ = centroidx[iJ 
centro'idycpu+ = centroidy[i] 
nptscpu+ = npts[i] 

end for 
Return centroid 
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Figure 3.6: Block diagram of video processing algorithm. 

3.4 Overall System Implementation 

A block diagram of the logical organization of the system is shown in Figure 3.6. 

A video sequence is loaded into system RAM on the host PC. The video frame is 

then transferred via direct memory access (DMA) to the GPU global memory via 

the Peripheral Component Interconnect (PCI) Express bus. The log-polar transform 

kernel is then performed to foveate the frame, as well as the previous video frame. The 

LPT has to be recomputed for the previous frame since the foveation point changes 

between frames. Two consecutive LPT images with the same foveation point are 

needed for the subsequent optical flow calculation. At this point, the LPT images 

are transferred into CUDA arrays and bound to texture memory, to increase the 

processing speed of the optical flow kernel. 

The optical flow kernel is then executed, followed by foveation point selection, as 

described in section 3.3.4. The centroid of the thresholded image is set as the foveation 

point for the next video frame. The optical flow motion vectors are transferred via 

the PCI Express bus from global memory to system RAM to complete the process. 

This process is illustrated in Algorithm 4. The host-side code is also provided in 

Appendix C. 
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Algorithm 4 CPU Host Algorithm 

Load frame I (t - dt) to global memory 
for All frames in video sequence do 

Copy frame I(t) to global memory 

McMaster - Electrical Engineering 

Launch LPT transform kernel for frame I (t - dt) 
Launch LPT transform kernel for frame I(t) 
Swap pointers between frame I(t) and I(t - dt) 
Transfer LPT images to texture memory 
Launch optical flow kernel 
Launch foveation point selection kernel 
Transfer optical flow vectors to system RAM 

end for 

3.5 Kernel Efficiency and Resource Utilization 

The execution speed of a CUDA kernel is dictated to a large extent by its GPU occu-

pancy, memory access patterns, and divergence. Each multiprocessor is limited to 16 

KB of shared memory, hence as the amount of shared memory consumed by a thread 

block increases, the maximum occupancy (or number of thread blocks executing si­

multaneously on the GPU) decreases. There is also a maximum number of registers 

that a thread can use, before variables begin to be stored in Local Memory. Local 

Memory corresponds to registers being stored in the GPU global memory, which neg­

atively impacts execution speed due to the 300 clock cycle access latency between 

global memory and the GPU. The number of registers available depends on the GPU 

architecture. The GTX 280 GPU used in this work has a maximum number of 21 

Divergent branches and serialized warps (warps that must be executed in sequence, 

rather than in parallel) also negatively impact performance. Divergent branches and 

serialized warps are a result of condition statements inside the kernel. Unfortunately, 

few realistic algorithms can be decomposed to avoid all condition statements, although 
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Table 3.1: Kernel Resource utilization (Shared memo values given are per block, 
others per thread) 

----~-----------------------------------------
Kernel Registers Shared Mem. Local Mem. 

Foveation Pt. 7 2112 bytes 0 
LPT 8 60 bytes 0 
LPT /w interp. 9 56 bytes 0 
Optical Flow 20 6780 bytes 0 

Table 3.2: Kernel Efficiency (values given are per kernel) 

Kernel Occupancy Divergent Serialized 
Branches Warps 

Foveation Pt. 100% 17 792 
LPT 100% 0 889 
LPT /w interp. 100% 0 877 
Optical Flow 50% 721 14130 

care must be taken to minimize the number. If a condition affects an entire warp, 

serialization does not occur. 

The kernel resource utilization and efficiency are shown in Tables 3.1 and 3.2, 

respectively. The optical flow kernel is clearly the most resource-intensive of the four 

kernels. The optical flow kernel consumes 20 registers per thread and 6780 bytes of 

shared memory space per block. The shared memory footprint of the kernel reduces 

its GPU occupancy to 50%. In other words, only half of the maximum number of 

blocks are executing in parallel as is theoretically possible. All kernels have a low 

number of divergent branches and serialized warps, especially given the number of 

threads per kernel. 
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Chapter 4 

System Evaluation 

Experimental results for the CUDA optical flow system are described in this chapter. 

A description of the system configuration and performance metrics used to evaluate 

the system is given first. The performance and accuracy of the algorithms described 

in Chapter 3 is evaluated using synthetic and real-world video sequences. The final 

part of the chapter demonstrates the use of the optical flow algorithm in a closed-loop 

control application. 

4.1 Experimental Configuration 

Experiments were performed on an NVIDIA GeForce GTX 280 graphics card, which 

includes 240 processors and 1 GB of RAM. The host PC ran on a Pentium Core 

2 Duo clocked at 2.6 GHZ, with 4 GB of RAM. Experiments were performed with 

the foveated optical flow algorithm on four video sequences: a 10 frame sequence 

of a moving hand (shown in Figure 4.1 and refered to as the hand sequence), two 

Yosemite sequences, with and without clouds (originally created by Lynn Quam), 
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( a) Optical Flow Field 

(b) Captured video frame ( c) Segmented video frame 

Figure 4.1: a) Optical Flow field from live video sequence shown in b). b) One 
frame of live video sequence. c) Segmented video frame, based on optical flow field 
magnitude. 

and the Ettlinger-Tor sequence [46]. The 10 frame sequence (shown in Figure 4.1) 

at sizes from 160 x 120 to 1920 x 1440 was used to characterize the execution time 

on the GPU and CPU. The Yosemite sequences, with and without clouds, were used 

to characterize the error between the results and a ground truth. The standard non-

synthetic video sequences, Ettlinger-Tor, was used to test the algorithms performance 

on real world data. 
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4.1.1 Measuring Performance Gain 

The parallel performance of the algorithm on the GPU was compared to a CPU 

version using a relative performance gain measure, defined as: 

Prel = (Execution time on CPU)/(Execution time on GPU) (4.1) 

The relative performance measure was proposed in [26]. To characterize the added 

performance gain resulting from adding foveation to optical flow, a relative perfor-

mance gain between the foveated and non-foveated GPU algorithms was used. This 

performance measure is defined by equation 4.2 

PFOV = (Non-foveated Execution Time)/(Foveated Execution Time) (4.2) 

4.1.2 Measuring Optical Flow Accuracy 

An angular error measure, as proposed by Barron et al. [8], was used to characterize 

the accuracy of the optical flow algorithm. The velocity is described by the displace­

ment per unit time: v = (u, v) pixels/frame, where u is the horizontal displacement 

and v the vertical displacement. The error in the velocity vectors can be measured as 

an angular deviation from the correct orientation. A normalized 3-D direction vector 

is described by: 

1 T 
V = (u2 + v2 + 1)0.5 (u, v, 1) (4.3) 

The angular error between the correct velocity, v:, and the experimentally calcu­

lated velocity, v~, is given by: 
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Table 4.1: Execution time and relative performance gain for hand test sequence with 
n = 2 and 1I = 2 for non-foveated optical flow. 

Image Size GPU (fps) CPU(fps) Prel 

160 x 120 659.37 11.62 56.74 
320 x 240 222.12 2.69 82.70 
640 x 480 60.70 0.65 93.64 
800 x 600 39.40 0.41 96.79 
1024 x 768 24.22 0.25 97.50 
1280 x 960 15.64 0.16 96.45 
1600 x 1200 10.00 0.10 96.58 
1920 x 1440 6.94 0.07 100.87 

'l/JE = arccos ( v~ . v~) (4.4) 

4.2 Performance Evaluation 

4.2.1 Non-Foveated Optical Flow 

One frame of the speed characterization hand test sequence, along with the resulting 

optical flow field is shown in Figure 4.1. The performance of the CUDA optical flow 

algorithm without foveation was tested first, with the results shown in Table 4.1 and 

illustrated in Figure 4.2(a). Frame rates achieved range from 6.94 fps for a resolution 

of 1920 x 1440 to 60.70 fps for 640 x 480 and 222.12 fps for 320 x 240. The relative 

performance gain over the CPU, Prel , ranges from 100.87 to 56.74. The optical flow 

algorithm was tested for a variety of search window, n, and correlation window, 1I, 

radii. 
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Figure 4.2: a) Performance vs. image size for a variety of comparison pixel patch, 
1/, and search area, n, radii with non-foveated optical flow. b) Performance gain of 
foveation algorithm 
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Performance Gain vs. Search Area Radius (n) and 
Comparison Pixel Patch Radius (v) 
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Figure 4.4: Relative performance gain versus v and n for one resolution (640 x 480) 

4.2.2 Foveation Algorithm 

The foveation algorithm was applied to the same hand test sequence shown in Figure 

4.1, with the relative performance gain illustrated in Figure 4.2(b) and Table 4.2. As 

illustrated, the performance gain over the CPU is significant, although the algorithm 

consumes a small amount of GPU time compared to optical flow computation. On 

the GPU, the algorithm executes at a frame rate of 1037.56 fps for a resolution of 

360 x 200 to 628.14 fps for a resolution of 1920 x 1440 when rescaling the cartesian 

image to a 360 x 200 (Ne x NRings) LPT image. The performance gain over the 

CPU shows a nearly linear increase for the range of image sizes tested. 

4.2.3 Foveated Optical Flow 

A foveated version of the optical flow algorithm, with deformation correction, was 

applied to the same test sequence. In all cases, the log-polar transform resampled the 
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Table 4.2: Foveation algorithm execution time and relative performance gain for hand 
test sequence. 

Image Size GPU (fps) CPU(fps) Prel 

360 x 200 1037.56 242.69 4.28 
640 x 400 1027.41 73.14 14.05 
800 x 600 894.77 40.26 22.23 
1024 x 768 877.19 24.53 35.76 
1280 x 960 781.25 15.49 50.44 
1600 x 1200 712.25 9.97 71.47 
1920 x 1440 628.14 6.85 91.64 

Table 4.3: Foveated optical flow algorithm execution time and relative performance 
gain for hand test sequence with n = 2 and l/ = 2. 

Image Size GPU GPU Non 
Foveated(fps) -Foveated (fps) 

160 x 120 
320 x 240 
640 x 400 
800 x 600 
1024 x 768 
1280 x 960 
1600 x 1200 
1920 x 1440 

230.14 659.37 
224.81 
202.41 
198.82 
181.87 
160.30 
137.47 
115.76 

222.12 
60.70 
39.40 
24.22 
15.64 
10.00 
6.94 

0.35 
1.01 
3.33 
5.05 
7.51 
10.25 
13.75 
16.68 

input image to 360 x 200 (NO x NRings). The algorithm was tested for a variety of 

search window and correlation window radii, (n, l/), with the results shown in Figure 

4.3(a) and Table 4.3. In this case, the relative performance gain, PFOV , was computed 

as the non-foveated GPU speed / Foveated GPU speed. 

4.2.4 Performance Characteristics 

The non-foveated optical flow algorithm exhibits a characteristic exponential rise 

in performance gain over the CPU at low resolution follow by saturation at higher 
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resolutions, as shown in Figure 4.2(a). Low performance gain at low resolutions occurs 

because of two factors: overhead in launching the kernel on the GPU and memory 

transfers between the host and GPU RAM. Launching a kernel on the GPU consumes 

resources. 

As the time spent in the kernel compared to the time spent launching kernels 

decreases, the performance gain of the algorithm over the CPU also decreases. The 

same condition holds for memory transfers. As the frequency of transferring image 

frames increases, extra time is spent setting up memory transfers and binding the 

foveated images to textures, as well as transferring results back to system RAM. As 

image resolution increases, the overhead as a fraction of total run time decreases. 

This causes the rapid rise in performance gain. 

When the GPU is functioning at its full capacity, the performance gain levels off, 

resulting in a saturated region. The saturation region therefore corresponds to a 1 to 

1 linear increase in GPU execution time versus CPU execution time with increasing 

image size. 

The values of the comparison pixel patch radius, v, and search area radius, n, also 

affect the performance gain. This can clearly be seen in the surface plot presented in 

Figure 4.4. Certain values of the comparison pixel patch, v, and search area, n, radii 

lead to higher performance gain. In particular, there is a peak at low values of v and 

medium values of n. 

The result is due to different levels of GPU occupancy. The percentage of idle 

threads increases as v increases, decreasing the percentage of threads involved in cal­

culating motion vectors. The number of pixels that each thread must access when 
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calculating the SSD also increases with 1/, increasing computation time. As n in­

creases, the amount of shared memory used per thread block also increases. Since 

only 16KB of shared memory is available per multiprocessor, increasing n decreases 

the number of thread blocks that can execute in parallel. However, as seen by the 

Prel increase in Figure 4.2(a) with an increase in n, the parallel GPU implementation 

is more efficient than the CPU with the extra computation. 

Introducing foveation to the optical flow algorithm introduces a further perfor­

mance gain of up to 27 times, depending on resolution and nand 1/ parameters. A 

graph of foveated GPU versus non-foveated GPU performance is shown in Figure 

4.3(a), with a table of frames per second versus resolution shown in Table 4.3. The 

foveation algorithm re-samples a higher resolution image (the original cartesian video 

frames) into a lower resolution image. The optical flow algorithm therefore has to 

operate on a smaller image. The added complexity of calculating the LPT is more 

than outweighed by the drastic reduction in pixels, especially with increasing image 

size. The performance gain is greatest for larger 1/ and n values. Foveation is there­

fore best suited to accelerating optical flow at the heaviest computational burdens. 

However, even a 2x decrease in computation time is significant, given the already 

accelerated nature of non-foveated optical flow on the GPU. 

4.2.5 Comparison with Other Work 

The results discussed show an improvement over previous work utilizing FPGA and 

GPU methods. For non-foveated optical flow, Grossauer et al. [27] report a speed of 

17.419 fps using multi-grid methods on the GPGPU at a resolution of 511 x 511. Wei 

et al. [24] reported an FPGA implementation of tensor-based optical flow at 64 fps 
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Table 4.4: Algorithm performance for Yosemite sequence. Experiment corresponds 
to LPT resolution, (NO x NRings). 

Experiment AAE (deg) STD (deg) FPS 

Non-Fov 
360 x 200 
360 x 150 
360 x 100 

14.81 
27.71 
32.05 
39.94 

17.77 
37.76 
43.52 
53.02 

137.68 
141.04 
166.70 
269.80 

at 640 x 480 resolution. Mizukami et al. [28] report a CUDA implementation of Horn 

& Schunck (H&S), but the results are difficult to compare in this case since their 

implementation did not consider memory transfer overhead. However, they report a 

Prel of 2.3 at 316 x 252 resolution. 

The work of Durkovic et al. [26] is included in Figure 4.2( a) for comparison. 

Durkovic et al. implemented the Lucas and Kanada (L&K) and Horn and Schuncke 

(H&K) algorithms on the GPU using shader technology, prior to the introduction of 

CUDA. The advantages of an efficient mapping of optical flow to CUDA, compared 

to shaders, is evident in the graph. Both implementations exhibit similar behaviour, 

with an initial exponential rise in performance gain followed by saturation. 

A comparison of the previously reported work and the current algorithm is shown 

in Figure 4.3(b). The graph displays the frame rate normalized by the number of 

pixels in the image. CPU, GPGPU multi-grid [27], FPGA [24], non-foveated optical 

flow and foveated optical flow results are shown. Both foveated and non-foveated 

optical flow was calculated with n = 1/ = 2 and at 320 x 200 and 640 x 480 resolution, 

respectively. Significantly, the non-foveated optical flow performance matches that of 

a dedicated FPGA implementation reported in [24J. 
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Table 4.5: Algorithm performance for Yosemite sequence with interpolation. Exper­
iment corresponds to LPT resolution, (NO x NRings). 

Experiment AAE (deg) STD (deg) FPS 

Non-Fov 
360 x 200 
360 x 150 
360 x 100 

14.81 
24.09 
30.00 
37.69 

17.77 
32.51 
41.06 
50.74 

137.68 
137.02 
160.35 
246.72 

Table 4.6: Algorithm performance for Yosemite with Clouds sequence. Experiment 
corresponds to LPT resolution, (NO x NRings). 

Experiment AAE (deg) STD (deg) 

Non-Fov 
360 x 200 
360 x 150 
360 x 100 

24.12 
34.47 
39.41 
48.09 

21.39 
43.88 
49.54 
58.86 

Table 4.7: Algorithm performance for Yosemite with Clouds sequence with interpo­
lation. Experiment corresponds to LPT resolution, (NO x NRings). 

Experiment AAE (deg) STD (deg) 

Non-Fov 
360 x 200 
360 x 150 
360 x 100 

24.12 
31.06 
37.57 
46.26 
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( a ) Yosemite (b) Yosemite with clouds 

Figure 4.5: a) Frame 10 of Yosemite sequence b) Frame 10 of Yosemite with clouds 
sequence 
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Non-Foveated Optical Flow Vectors 
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(a) Non-foveated Optical Flow Vectors 

Non-foveated Optical Flow Angular Error Magnitude 
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(b) Non-foveated Optical Flow Angular Error Magnitude 

80 

Figure 4.6: Optical flow vectors (a) and optical flow angular error magnitude (b) for 
non-foveated optical flow. Experiments performed with the Yosemite sequence. 
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Foveated Optical Flow Vectors 
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(a) Foveated Optical Flow Vectors 

Foveated Optical Flow Angular Error Magnitude 

(b) Foveated Optical Flow Angular Error Magnitude 

Figure 4.7: Optical flow vectors (a) and optical flow angular error magnitude (b) for 
foveated optical flow. Experiments performed with the Yosemite sequence. 
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Non-foveated Optical Flow Vectors 
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80 

(a) Non-foveated Optical Flow Vectors 

Non-foveated Optical Flow Angular Error Magnitude 

(b) Non-foveated Optical Flow Angular Error Magnitude 

Figure 4.8: Optical flow vectors (a) and optical flow angular error magnitude (b) 
for non-foveated optical flow. Experiments performed with the Yosemite with clouds 
sequence. 
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(b) Foveated Optical Flow Angular Error Magnitude 

Figure 4.9: Optical flow vectors (a) and optical flow angular error magnitude (b) 
for foveated optical flow. Experiments performed with the Yosemite with clouds 
sequence. 
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4.3 Error Analysis on Synthetic Data 

To characterize the accuracy of the optical flow algorithm developed in this work, 

video sequences are needed with a known motion vector field, or ground truth. Syn­

thetic video sequences are useful for this task. The Yosemite sequence, originally 

created by Lynn Quam of SRI, is a standard test sequence in the computer vision 

community and is used for ground truth comparison in this work. The Yosemite 

sequence consists of a fly-through. of Yosemite national park texture-mapped onto 

a 3-D landscape generated from a height-map of the fly-through. Two versions of 

the sequence are available, one without clouds and one with clouds. Representative 

frames of the Yosemite sequences are shown in Figure 4.5. 

Four test cases are used to quantify the error performance of the algorithm: The 

Yosemite sequence without clouds, with and without interpolation, and the Yosemite 

sequence with clouds, with and without interpolation. For each sequence, the AAE 

and STD were calculated and averaged over the entire 10 frames of the video. For each 

test case, the algorithm was run without foveation, and with foveation at resolutions 

of (NO x NRings) of (360 x 200), (360 x 150), and (360 x 100). 

Results for the proposed algorithm with the Yosemite sequence are shown in Tables 

4.4 and 4.5 and Figures 4.6 and 4.7, respectively. The non-foveated correlation based 

optical flow algorithm returns an average angular error (AAE) of 14.81 degrees, which 

is consistent with other correlation-based methods [8J. Introducing foveation increases 

the AAE, with a corresponding drop in processing time. At a foveated resolution of 

(360 x 200) the AAE increases by 12.9 degrees as shown in Table 4.4. As the foveated 

resolution decreases the AAE continues to increase. Decreasing the resolution to 

360 x 150 from 360 x 200 increases the AAE by 4.34 degrees while increasing the 
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frame rate by 25.66 fps. A further decrease in resolution to 360 x 100 increases the 

AAE by 7.89 degrees and increases the frame rate by 103.10 fps. 

Introducing linear interpolation to the log-polar transform decreases the overall 

error in the results as shown in Table 4.5. At a resolution of 360 x 200, adding 

interpolation decreases the error by 3.62 degrees and the frame rate by 4.02 fps. At a 

resolution of 360 x 150 the AAE and frame rate decrease by 2.05 degrees and 6.35 fps, 

respectively. Finally, at a resolution of 360 x 100, the AAE and frame rate decrease 

by 2.25 degrees and 23.08 fps. 

Similar results were obtained for the Yosemite with clouds sequence, as shown in 

Tables 4.6 and 4.7 and Figures 4.8 and 4.9, respectively. The error for this sequence is 

higher since the optical flow algorithm is not efficient at calculating the motion vectors 

of the cloud region. This occurs because the cloud region violates the brightness 

constancy assumption discussed in Chapter 2. The clouds, in fact, undergo random 

brownian motion. 

A plot of resolution versus AAE for the above results is shown in Figure 4.10. 

Clearly, the initial resampling to a space-variant LPT image introduces error, which 

continues to increase with decreasing foveal resolution. Interpolating when sampling 

reduces the error at all resolutions for a modest decrease in frame rate. 
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Figure 4.10: Average angular error versus resolution 
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( a) Optical Flow Field 

(b) Ettlinger-Tor Frame 10 (c) Optical Flow Magnitude 

Figure 4.11: a) Computed optical flow field between frames 9 and 10 of the Ettlinger 
Tor traffic sequence b) Frame 10 of Ettlinger-Tor traffic sequence c) Magnitude of the 
optical flow field. 
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(a) Frame 5 (b) Frame 15 (c) Frame 25 (d) Frame 35 

(e) Frame 5 (f) Frame 15 (g) Frame 25 (h) Frame 35 

Figure 4.12: Ettlinger-Tor frames 5, 15,25, and 35 (a)-(d) with corresponding optical 
flow field magnitude (e)- (h) 

4.4 Performance on Real-World Data 

The algorithm was tested on real-world data to test its performance in more realistic 

situations. The Ettlinger-Tor [46] sequences was used for this purpose. The foveation 

point was allowed to vary to focus the fovea on the moving regions. Results are shown 

in Figure 4.11. As expected, the results are clearest near the foveation point. The 

flow boundaries are sharp, and can be used directly for segmentation purposes by 

applying a thresholding step. A segmented motion magnitude map can be further 

used to change the foveation point to acquire an accurate flow map at varying points 

in the image. 

A four-frame sequence from Ettlinger-Tor is shown in Figure 4.12(a)-(d). The 
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corresponding optical flow field magnitude, with foveation is shown in Figure 4.12(e)­

(h). The fovea is able to stay fixed on the largest moving object, in this case, the 

bus. The moving objects are also appropriately segmented. 

4.5 Application of Foveated Optical Flow to Closed­

Loop Control 

In the previous sections, the accelerated optical flow algorithm was tested with syn­

thetic and real-world pre-recorded video sequences. However, in many applications, 

computer vision algorithms must operate in real-time with live video. One example 

is controlling a robot. A robotic control experiment was devised to verify that the 

present system is capable of operating under such conditions. The goal of the ex­

periment is to process a video stream in real-time, extract the position of a robot 

arm, and use that information to position the arm. A robotic control experiment can 

therefore be thought of as an instructive example of a real-time application of the 

parallel optical flow system developed in this previous chapters. 

4.5.1 Visual Servo Control 

The visual servoing technique will be used to implement closed loop position control 

of a robot arm. The reader is directed to Appendix A for a review of control theory, 

visual servo, and robot mechanics. A short summary of the method is provided in 

this section. 

The general idea behind visual servo is to minimize the position error between a 

set of features on an object to be controlled and a set of desired positions for those 
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features. The feature position is measured and tracked directly in images streamed 

from a video camera. The next step is to relate the movement of the image features 

to the movement of the object in three-dimensional space. This is done using a 

mathematical construct known as the image jacobian. 

In this experiment, the image jacobian related image feature motion to the motion 

of the end-effector of a robot arm. For control purposes, it is more convenient to 

express the motion of the image features in terms of the angular motion of the robot's 

joints. This is done using the robot's kinematic jacobian. This forms the joint-space 

visual servo control law, given by 

(4.5) 

In the above equation, J8 is the image jacobian, J(if) is the kinematic jacobian, V is 

a transformation matrix from the robot coordinate frame to the camera coordinate 

frame, e is the position error vector, and if is the angular velocity of the robot's joints. 

The control law include three terms, a proportional, integral, and derivative term 

to form a PID controller. A is the proportional gain, f.1. is the integral gain, and K, 

is the derivative gain. A derivation of the above equation is provided in Appendix 

A. The optical flow algorithm is used to measure the position of the image features 

while the visual servo system actuates the robot arm. 

4.5.2 Experimental Setup 

The goal of the experiment is to use the optical flow algorithm to measure the position 

of a robot's end-effector in real-time. The CUDA system is used as the feedback in 

a closed-loop visual servo controller in order to position the arm. vVhile the use of 
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Figure 4.13: System diagram of the visual servo control experiment 

visual servo in such an application has already been explored, the experiment serves 

as a demonstration that the optical flow system can function at a frame rate sufficient 

for real-time control on a standard PC. 

A schematic of the experimental setup is shown in Figure 4.13, as well as a pho-

tograph of the actual system in 4.14. The video is acquired by a CCD digital camera 

and transferred to the vision PC over Fire Wire. The CUDA algorithm is then exe-

cuted on the vision PC. The position of the end-effector is extracted and transferred 

to the control PC via ethernet. The control PC executes the visual servo controller 

and outputs voltage signals to the robot's power amplifiers, completing the control 

loop. 

A more detailed description of each component is discussed in Appendix B. Briefly, 

however, the robot arm is a CRS Robotics A255 5 degree of freedom manipulator. 

The control software is designed in Simulink, and compiled to real-time code using 

software provided by Quanser Consulting. 
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Figure 4.14: Experimental configuration of the CRS A255 robot arm. The robot 
follows a circular trajectory in a vertical plane 

To simplify the experiment, the robot is only controlled in two joints, confining the 

end-effector to a vertical plane. To aid in feature extraction, a green marker is placed 

on the end-effector. This allows the end-effector to be located in a motion segmented 

image (resulting from optical flow computation) using colour segmentation. Finally, 

the camera is placed parallel to the arm's plane of motion, which sets V = I, the 

identity matrix. 

4.5.3 Experiments 

Five sets of experiments were performed to characterize the behaviour of the visual 

servo controller. In all cases, the arm was set to follow a circular trajectory at various 

sizes and velocities. The configuration of the robot arm and the path it was set to 
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Figure 4.15: Marker used to determine the position of the end effector using image 
processing 

follow is shown in Figure 4.14. The path was specified in the image plane, hence the 

visual servo controller was responsible for following the trajectory. The optical flow 

system, meanwhile, was used to measure the position of the image features. 

To simplify the experiment, a green square was attached to the end-effector to 

facilitate tracking its position. This is pictured in Figure 4.15. After the optical flow 

step, the green square is segmented from the motion segmented image using a simple 

color threshold. In all cases, the sampling time of the visual servo loop was limited 

by the maximum speed of the camera: 30 Hz. The camera resolution was set at 

640 x 480. 

A summary of the experiments performed is shown in Table 4.8. The amplitude 

refers to the radius of the circular trajector (in pixels) from the robot's starting 

position. The starting position is designated as the origin, (0,0). The first three 

experiments test the response of the system with changes in the amplitude of the 
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Table 4.8: Summary of visual servo experiments 

Experiment Amplitude [x y] Freq. (Hz) 

1 [40 40] pixels 1 
2 [30 30] pixels 1 
3 [20 20] pixels 1 
4 [30 30] pixels 2.5 
5 [30 30] pixels 5 

Table 4.9: Error versus amplitude in visual servo experiments 

Experiment Amplitude [x y] Error in x [pixels] Error in y [pixels] 

1 [40 40] pixels 7.29 7.02 
2 [30 30] pixels 5.85 5.40 
3 [20 20] pixels 3.79 3.77 

circular trajectory. The experimental results, along with the theoretical trajectory, 

are shown in Figure 4.16. 

Two major effects are visible in the results. The first is the step-like nature of the 

trajectories. This is caused by the low sampling rate of the camera (30 fps, or 30 Hz). 

If the sampling rate were increased, the curves would become smoother. The second 

effect is the noise in the robot's position. The effect becomes especially evident as 

the size of the trajectory decreases. The noise is caused by the low resolution of 

the camera (640 x 480). The resolution limits the precision of the visual position 

measurement of the end-effector. With increasing resolution, the measurement noise 

would decrease. 

The next set of experiments test the response of the system as the velocity of the 

desired trajectory is increased. The first set of experiments (experiment 3) tests one 

revolution per second, the next set of experiments (experiment 3 and 4) increase the 

rate to 2.5 revolutions per second and 5 revolutions per second. The results are shown 
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Table 4.10: Error versus frequency in visual servo experiments 

Experiment Frequency Error in x [pixels] Error in y [pixels] 
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Figure 4.16: Experimental (top) versus theoretical (bottom) trajectories for visual 
servo experiments 1 - 3 

in Figure 4.17. 

The discrete nature of the positioning is particularly apparent at higher speeds. 

As stated previously, this is a result of the low sampling rate of the camera. At 5 

Hz, the position has a large deviation from the desired trajectory. This effect would 

decrease as the sampling rate of the camera increases. 

The error between the output (Le. the position on the image plane of the end­

effector) and the input (the desired position) was characterized by calculating the 
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Figure 4.17: Experimental (top) versus theoretical (bottom) trajectories for visual 
servo experiments 3 - 5 

average error between the two. A summary of the results is presented in Table 4.9. 

The error is largest for the first experiment, with a displacement radius of 40 pixels. 

The error decreases with decreasing amplitude. As the movement amplitude increases, 

the frequency ofrevolutions stays the same (1 revolution per second), hence the speed 

of the arm must increases. This results in lower accuracy. 

This effect is more clearly seen by varying the frequency of revolution while main-

taing a constant amplitude, as shown in Table 4.10. As frequency increases, the error 

increases as well. This is particularly apparent at 5 revolutions per second. It is 

interesting to note that the error in the y direction does not increase as substantially 

as in the x direction. This is due to the fact that to move in the y direction the robot 

must actuate its elbow, while moving in the x direction requires movement in the 

shoulder. The shoulder is a much heavier joint than the elbow, reducing positioning 
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accuracy. This experiment illustrates that positioning accuracy is a function of both 

the visual servo system, as well as the mechanical properties of the manipulator. 

While the resolution and sampling rate of the camera limited the fidelity of the 

visual servo controller, the experiments were successful in demonstrating that the 

foveated optical flow system is capable of functioning in a real-time environment. 

The application of CUDA to control of robotics was also demonstrated. 
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Chapter 5 

Conclusion 

This thesis presents a novel method to compute the optical flow for time-critical tasks 

by combining GPU hardware acceleration with foveated vision techniques. The per­

formance of the implemented optical flow algorithm was found to achieve frame-rates 

equaling that of an FPGA implementation [27], even prior to adding the foveation 

step. These results demonstrate the ability of optimized CUDA algorithms to match 

the performance of dedicated hardware implementations in certain cases. By adding 

foveation to the optical flow system, the frame rates achieved were significantly higher 

than previously reported non-foveated GPU and FPGA implementations of optical 

flow. 

The thesis began with a literature review of the methods used to calculate the 

optical flow and foveate images, as well as a survey of the computational techniques 

used to implement the above methods at high frame rates. The variational and 

correlation-based optical flow techniques were covered in more detail in Chapter 2, 

along with a justification of the choice of the correlation-based method in this work. 
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Methods to produce foveated images were discussed, specifically the log-polar trans­

form and the consequences of its use when calculating the optical flow. The CUDA 

GPU programming model was then discussed in Chapter 3, along with details of the 

implementation of the foveated optical flow system. Experiments to characterize the 

execution speed and accuracy of the implemented system were performed in Chapter 

4, along with a proof-of-concept study of using the system for real-time closed-loop 

control. 

The performance of the non-foveated optical flow system was characterized on a 

pre-recorded 10 frame video sequence resampled to resolutions ranging from 160 x 120 

to 1920 x 1440. With the correlation window, v, and search window, n, radii set to 

2, the optical flow algorithm was found to operate at 659.37 fps a 160 x 120, 60.70 

fps at 640 x 480, and 6.94 fps at 1920 x 1440. The relative performance gain, Prel 

compared to a CPU implementation ranged from 56.74 to 100.87 between resolutions 

of 160 x 120 to 1920 x 1440, respectively. The performance of the algorithm was further 

characterized as a function of the search window and correlation window radii, (n, v). 

It was found that the lowest performance gain occurs with high values of v, while the 

highest performance gain occurs for high levels of n. By plotting Prel as a surface 

plot, it was found that peak performance gain occurs for low values of v and medium 

values of n. 

The performance of the LPT transform algorithm was characterized next, and 

found to have a linear performance gain over the CPU over the range of resolutions 

tested above. The LPT transform was found to be compuationally lightweight com­

pared to the optical flow algorithm. When resampling to a (B, u) = (360,200) LPT 

image, the foveation algorithm ran at 1037.56 fps for a cartesian image resolution of 
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360 x 200 and 628.14 fps for a cartesian image resolution of 1920 x 1440. The per­

formance gain over the CPU at the given resolution range varied from 4.28 to 91.64, 

hence executing the LPT transform on the GPU results in a significant computation 

speed increase. 

The foveation and optical flow algorithms were combined and their performance 

tested on the same video sequence to characterize execution speed. The non-foveated 

GPU to foveated GPU performance gain, PGPU , was found to be 3.33 at a resolution 

of 640 x 480 and 16.68 at a resolution of 1920 x 1440 with (n, v) = (2,2). Given 

the already accelerated execution speed of the optical flow algorithm, an additional 

multiplier of 3.3 - 16.68 is quite significant and allowed the foveated optical flow 

system to execute at 202.41 fps at 640 x 480 resolution and 115.76 fps at 1920 x 1440 

resolution. 

With the performance characterization complete, the accuracy of the non-foveated 

and foveated optical flow methods was tested next. The standard optical flow test 

sequence, Yosemite fly-through, was used for this task and the computer optical flow 

vectors were compared to a ground truth. 

It was found that the non-foveated correlation based optical flow algorithm returns 

an AAE of 14.81 degrees, which is consistent with other correlation-based methods 

[8]. Introducing foveation increases the AAE, with a corresponding drop in processing 

time. At a foveated resolution of (360 x 200) the AAE increases by 12.9 degrees. As 

the foveated resolution decreases the AAE continues to increase. Decreasing the 

resolution to 360 x 150 from 360 x 200 increases the AAE by 4.34 degrees while 

increasing the frame rate by 25.66 fps. A further decrease in resolution to 360 x 

100 increases the AAE by 7.89 degrees and increases the frame rate by 103.10 fps. 
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Introducing linear interpolation to the log-polar transform decreases the overall error 

in the results with a modest increase in computation time. At a resolution of 360 x 200, 

adding interpolation decreases the error by 3.62 degrees and the frame rate by 4.02 

fps. At a resolution of 360 x 150 the AAE and frame rate decrease by 2.05 degrees 

and 6.35 fps, respectively. Finally, at a resolution of 360 x 100, the AAE and frame 

rate decrease by 2.25 degrees and 23.08 fps. 

Next, the system was tested on a real-world test sequence, the also well-known 

Ettlinger-Tor video. The foveation point was allowed to vary to focus the fovea on 

the moving regions. The results were found to be clearest near the foveation point, as 

expected. The boundaries of the optical flow field were sharp, and hence were eligible 

to be used directly for segmentation purposes by applying a thresholding step. During 

the course of the video sequence, the fovea was able to remain fixated on the largest 

moving object, in this case, the bus in the video. Hence, the implemented system 

was shown to be able to process a real video sequence with adequate results. 

A visual servo experiment with a robotic arm was devised to demonstrate that the 

foveated optical flow system developed in this thesis is suitable for use in real-time 

robotics and control applications. The optical flow system was used to segment the 

moving robot arm from the background and find the position of its end-effector in 

the image. This data was then used to close a control loop and actuate the robot to 

follow a circular trajectory. The optical flow system was successfully able to operate 

at 30 fps in a closed-loop with the robot controller and follow the pre-programmed 

trajectory. The speed of the image processing in this case was limited by the CCD 

camera used. The experiment successfuly validated the applicability of the CUDA 

optical flow system developed to control applications. Besides the optical flow system 
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developed in this work, this experiment also successfuly showed the applicability of 

CUDA image processing systems to real-time control applications in general. 

Several directions are possible for further research based on the work presented in 

this thesis. The optical flow system could be expanded to consider multiple frames 

and additional constraints to improve the accuracy of the calculated motion vectors. 

Further applications of foveated optical flow implemented in CUDA could also be 

explored, particularly in robotics, surveillance, and video compression applications. 
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Appendix A 

Robot Mechanics and Control 

A.1 The General Control Problem 

A robot arm, also called a manipulator, is a multi-jointed system. Each joint is moved 

by an actuator, typically a DC motor. The position and velocity of each joint can 

therefore be controlled by some control input (i.e. voltage). The position of each 

joint is measured by sensors, providing feedback to adjust the control inputs so that 

the robot reaches a desired position (or velocity). These components form the basis 

of a control system. 

In control engineering parlance, the system to be controlled is called the plant. 

The system that provides inputs to the plant is called the controller. The input to 

the controller is the error signal, which is formed by subtracting the current plant 

outputs (i.e. joint position, velocity, etc.) from a desired output (the set-point). This 

arrangement is illustrated in Figure A.I. 
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y 

Figure A.I: General control system including set-point (R), error signal (e), plant 
input (u), and plant output (Y) 

A.2 Proportional-Integral-Derivative Control 

Proportional-Integral-Derivative (PID) control is a classic controller design that has 

found widespread use in robotics and process control. A PID controller provides an 

input to the plant, u, based on three terms. The first is a term proportional to the 

error. In other words, the greater the error, the greater the response. The second 

term provides a response based on the integral of the error. The final term provides 

a response based on the derivative of the error. 

The integral term has an important role in reducing the rise-time (time for the out­

put to reach a desired value) and steady-state error of the controller. The derivative 

term reduces overshoot and reduces the settling time of the system. A block diagram 

of a PID controller is shown in Figure A.2, with K p , K i , and Kd representing the 

proportional, integral, and derivative gains, respectively. 

The PID control law requires a key assumption: that the plant is a linear system. 

This assumption does not hold for a robot arm, which is a complex, non-linear system, 

since the joints are coupled. Therefore, the acceleration of each joint affects the other 

joints. Furthermore, the response of the system changes based on the arm position. 
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Error--+--~ Output 

Figure A.2: Block diagram of a PID controller 

For example, a fully extended arm will respond differently than one where the joints 

place the end-effector close to the base [47]. 

However, the PID controller is standard in most commercial robots. This is possi­

ble since the gearboxes attached between each joint and actuator effectively linearize 

and decouple the joints, provided the gear ratio is high enough. The most common 

robotic controller designs treat each joint as an independent linear system, with its 

own PID controller. Coupling effects are treated as disturbances in the system. An 

in-depth discussion of more sophisticated controllers is provided in [47]. 

A.3 Robot Kinematics 

A robot is a complex mechanism, with multiple degrees of freedom (DOF) and the 

ability to move in three-dimensional space. A method must be used to keep track 

of the robot's position and orientation, as well as to compactly apply movements 

and rotations. This is accomplished through reference frames and transformation 

matrices. 

88 



M.A.Sc. Thesis - Peter Kuchnio McMaster - Electrical Engineering 

x 

Figure A.3: An object in space represented by a frame 

An object can be represented in 3-D space by attaching a frame to it and specifying 

its position and orientation relative to a reference frame. Therefore, an object can be 

specified with the matrix [48]: 

nx Ox ax Px 

ny Oy a y P y 

n z Oz a z P z 

0 0 0 1 

where ii, 0, and a are the normal, orientation, and approach vectors and P is a 

position vector, as shown in Figure A.3. The frame position and orientation can be 
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transformed by pre-multiplying by translation and rotation matrices, as shown below: 

1 0 0 dx 

T= 
o 1 0 dy 

o 0 1 dz 

o 0 0 1 

1 0 0 0 

0 cose -sine 0 
Rot(x, e) = 

0 sine cose 0 

0 0 0 1 

cose 0 sine 0 

0 1 0 0 
Rot(y,e) = 

-sine 0 cose 0 

0 0 0 1 

cose -sine 0 0 

sine cose 0 0 
Rot(z, e) = 

0 0 1 0 

0 0 0 1 

The matrix T is a translation matrix, while Rot(x, e), Rot(y, e), and Rot(z, e) 

rotate the frame about the x, y, and z axes of the reference frame. The set of equations 

that specify the position of the end-effector as a function of the joint variables are 

called the forward kinematics. For a more complex robot, the forward kinematics are 

given by a series of matrices that transform a frame attached to the robot's base to its 
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end-effector. This set of transformations fully specifies the position of the end-effector 

as a function of the joint variables [48]. 

A.4 Visual Servo Control 

A.4.1 The Image Jacobian 

In traditional robots, the position and velocity of each joint is measured with optical 

encoders. Using this data, the control loop can be closed, and the position of the 

end-effector determined using forward kinematics. While effective, this approach has 

several limitations. One limitation is that any flexibility and deflection in the robot's 

links will decrease positioning accuracy. Also, over time, chains, gears, and belts in 

the robot's drive mechanisms stretch and deform, further increasing positioning error. 

These limitations can be overcome by measuring the position of the end-effector with 

a camera and using the resulting data to close the control loop. This form of control 

is known as visual servo. 

This work uses the Image-Based Visual Servo (IBVS) approachl to control a robot 

arm. In image-based visual servo, the motion of a set of points in an image are used 

to directly infer the position of the end effector and close the control loop. This is 

accomplished through an interaction matrix, or interchangeably, image jacobian, that 

relates the velocity of a 3-D point to its velocity in an image. The image jacobian, 

Js , will now be derived. 

The first step in the derivation is to relate a 3-D coordinate, X = (X, Y, Z), 

defined relative to the camera frame, with its 2-D projection in the camera image, 

lSeveral variants of visual servo control have been introduced, with a detailed treatment of each 
provided in [49] 
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x = (x, y). This can be written as [50]: 

x = X/Z = (u - cu )/ fa 

y = Y/Z = (v - cv )/ f 

(A.I) 

(A.2) 

where (u, v) are the coordinates ofthe point in pixels, and cu , cv , f, and a are cam­

era parameters2. The next step is to take the time derivative of the above equations, 

yielding [50]: 

x = X/Z - XZ/Z2 = (X - xZ)/Z 

iJ = Y /Z - YZ/Z2 = (Y - yZ)/Z 

(A.3) 

(A A) 

We can now relate the velocity of the 3-D point to its spatial and rotational velocity 

components using the relation [50]: 

--> 

X = -v-:: - w-:: x X 

Or in component form: 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

where v-:: is the spatial velocity and w-:: is the rotational velocity. Relating the 

2(Cu , cv ) are the coordinates of the principal point, f is the focal length, and a: is the ratio of 
pixel dimensions. 
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above equations to the velocity of the image point, (x, iJ), we obtain [50] 

x = -vx/Z + xvz/Z + XYWx - (1 + x2)wy + YWz 

iJ = -vy/Z + yvz/Z + (1 + y2)wx - xyWy - XWz 

or in matrix form 

where Js is the image Jacobian, given by 

o x/Z xy 

-l/Z y/Z 1 + y2 -xy 

(A.9) 

(A.10) 

(A.11) 

The above equations specify the image Jacobian for one image point. However, at 

least three image points are required to control a 6DOF robot. This is required since 

the position and orientation of a single point is ambigious when a fully-actuated3 

manipulator is used. Fortunately, the image Jacobian is easily augmented to handle 

more than one feature points by simply stacking the single-point Jacobian described, 

above. An augmented Jacobian matrix for three image points will be given by [50] 

Js = J .... 
S2 

3 A robot is considered fully-actuated when its end-effector can reach any arbitrary position and 
orientation. An arm needs 6DOF to be fully actuated 
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It is important to note that the image jacobian requires knowledge of the depth of the 

point, Z, relative to the camera frame. Therefore the value of Z must be estimated 

or approximated. Therefore, an approximation of J8 , given by Js is used in practice. 

Fortunately, since the visual servo controller operates in a closed loop, only a rough 

approximation of Z is required, and the controller is fairly insensitive to changes in 

Z [49]. 

A.4.2 The Visual Servo Control Law 

vVith the image jacobian defined in the above section, we are now ready to formulate 

the visual servo control law. The error to be minimized by the controller is typically 

represented by a set of image points, s, and a set of desired values for the points, 8"1 

e(t) = s(t) - 8"1 (A.12) 

From the previous section, the relationship between the velocity of image points and 

camera velocity is given by 

(A.13) 

Therefore, the time variation of the error in relation to camera velocity is given by 

(A.14) 

To obtain an exponential decrease in the error, we require e = -Ae, where A is 

a constant. Solving equation A.14 for v: and substituting the above equation, we 

94 



M.A.Sc. Thesis - Peter Kuchnio McMaster - Electrical Engineering 

obtain the proportional visual servo control law [50]: 

(A.15) 

where J;- denotes the Moore-Penrose pseudo-inverse. The above control law encap-

sulates the basic building block of visual servo control. 

A.5 Derivation of the Joint-Space Visual Servo Con-

trol Law 

The above section described a visual servo control law in terms of the velocity of the 

end effector, v:. To control a robot arm, this velocity must be translated into the 

appropriate angular joint velocities, so that individual joints can be controlled. There­

fore, a visual servo control law in the joint space of the robot should be formulated 

[51]. 

The first step in the derivation is to consider the robot's kinematic jacobian, 

J(if), where if refers to the joint variables. The kinematic jacobian relates differential 

motions of the robot's joints to the resulting differential motions of the end-effector 

[48]. Suppose we can write the position of the end-effector, relative to its base frame, 

as a function of the joint angles (assuming a 6DOF robot with only revolute4 joints) 

(A.16) 

4Two types of joints are possible in a manipulator: revolute and prismatic. Prismatic joints move 
linearly (i.e. a piston) while revolute joints rotate in a circle 
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then a differential change in the position of the end-effector can be related to differ-

ential changes in the joint angles using the relation 

ax = gt~ aOI + gt~ a02 + ... + gt~ a06 

ay = gt~ aOI + gt~ a02 + ... + gt! a06 

az = gt~ aOI + gt~ a02 + ... + gt: a06 

awx = gt~aol + gt: a02 + ... + gt: a06 

!::l _ a15!::lO + als!::lO + + als !::lO uwy - Bfh U I arh U 2 . . . ae6 U 6 

awz = gt~ aOI + gt~ a02 + ... + gt: a06 

or, in matrix form 

ax 
ay ah ah 

ael ae2 

ah 
ael 

Finally, the equation can be written compactly as 

(A.17) 

We can see that equations A.17 and A.13 share a common term. The only difficulty is 

that the kinematic jacobian, J(iJ), is written relative to the robot's base frame, while 

the image jacobian, Js , is written relative to the camera reference frame. To fix this 
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problem, J(8) must be multiplied by a transformation matrix, as described in section 

A.3 to transform it to the camera's reference frame. Since the jacobian deals with 

velocities, only the rotation of the frame must be transformed. This is accomplished 

by multiplying the kinematic jacobian by a rotation transformation matrix, V, given 

by [51] 

where R is a rotation transformation matrix from the robot base frame to the camera 

frame. The resulting equation gives 

(A.18) 

The joint space visual servo control now can now be formulated, as in the previous 

section, however this time in terms of joint angle velocities 

(A.19) 

A.5.1 A Joint-Space PID Controller 

The above control law is a simple proportional controller. The performance of the 

system can be improved (in terms of rise time, overshoot, and steady-state error) by 

adding derivative and integral terms. The final PID control law in the robot's joint 

space is therefore: 

(A.20) 
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The above represents the full visual servo control law used to actuate the robot 

in this project. 
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Appendix B 

Robotic System Design and 

Implementation 

B.1 Video Acquisition 

The Firewire (or IEEE 1394) interface is commonly used for live video acquisition 

due to its simplicity, availability, and high bandwidth. In this work, a Sony (model 

number) CCD camera at a resolution of 640 x 480 and acquisition rate of 30 frames 

per second, connected to a Firewire port, was used to acquire live video. The Digital 

Camera (DCAM) protocol was used to communicate with the camera and receive its 

data. DCAM communication was implemented using the freely available Carnegie 

Mellon University 1394 DCAM driver, available in [7]. The DCAM driver was origi­

nally developed by Iwan Ulrich at the CMU Robotics Institute. 
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B.2 CRS 255 Open Architecture Manipulator 

Robotic experiments were performed using a CRS A255 5 degree of freedom robot 

arm, as pictured in Figure B.2. The robot has 5 joints: a base, shoulder, elbow, and 

2 wrist joints (pitch and roll). Since the A255 is missing a degree of freedom in its 

wrist, the arm cannot achieve an arbitrary position and orientation. However, since 

the experiments in this work only require the arm to move in a vertical plane, only 

two degrees of freedom are necessary. 

The CRS controller was modified by request by Quanser Consulting to form an 

open architecture robot. The internal PID controller provided by CRS was bypassed, 

allowing voltage to be sent directly to the motors using a PC interface board (the 

MultiQ data acquisition board, also provided by Quanser) [52]. This arrangement 

is shown in Figure B.1. The open architecture configuration allows a visual servo 

controller to be implemented in software, with commands sent directly to the robot's 

joints. 

B.2.1 Link Coupling 

The A255 robot differs from most common robot configurations because it follows a 

decoupled arm configuration [52]. A decoupled configurations means that as a joint 

rotates, other joints further up the arm maintain a costant angle with the baseplane. 

For example, if the shoulder joint rotates by 10 degrees, the elbow joint will rotate so 

that the elbow link maintains a constant angle with the baseplane. Link coupling is 

illustrated in Figure B.3. This effect is important to keep in mind when calculating 

the kinematic jacobian that depends on joint angles. 
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CRS Controller Robot 
,- ~ '-:.. - - -

Output Input 

MultiQ Board 

Figure B.1: Open architecture configuration for the CRS A255 robot arm 

B.3 Controller Design and Implementation 

B.3.1 Real-Time Control using WinCon 

The Quanser MultiQ board allows the robot to be controlled in real-time with a 

controller running on a standard PC. Unfortunately, standard PC operating systems 

(such as Windows) are not built to run real-time software. In general, this means 

that processes running on the as are not guarenteed to meet hard-deadlines, and 

may be pre-empted by other processes running on the PC. The as must therefore 

be extended with a real-time as extension, such as Ardence RTX in this case. In 

addition, Quanser Consulting software, called Win Con, is used to compile controller 

code to real-time executable code and to communicate with the robot. 
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Figure B.2: The CRS A255 5 DOF manipulator 

Figure B.3: Illustration of link coupling during manipulator motion. When Bl changes 
(to B3 ), B2 remains constant with respect to the base plane. 

B.3.2 Controller Implementation with Simulink 

The Matlab Simulink environment has become an industry standard for developing, 

prototyping, and analyzing control systems. WinCon, together with the Real-Time 

Toolbox, allows Simulink models to be compiled to real-time C code capable of execu-

tion under RTX. Designing the visual servo controller in Simulink drastically reduces 

development and troubleshooting time. 

The visual servo controller is built using a set of standard Simulink building blocks 
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provided by Quanser Consulting. Some blocks encapsulate C code that interfaces with 

the MultiQ board (and hence the robot), while other blocks form a basic Proportional­

Derivative (PD) controller for each joint. The most basic building block is a joint 

block, as shown in Figure B.4(a). The joint block performs two functions. It reads 

the joint encoders and converts the reading to a joint angle (J1) and joint velocity 

(i1). The block also accepts a voltage input (V1) and transmits the voltage level to 

the MultiQ board, where it will be sent to the power amplifiers and the motors. 

The next building block is a PD controller for each joint, as pictured in Figure 

B.4(b). The block implements the control law 

(B.1) 

where V is the voltage applied to the motor, B is the joint angle and Bd the desired 

joint angle (both in degrees), Kp is the proportional gain (in V /Deg) , and Kd is the 

derivative gain (in V /(Deg/s)). Finally, the joint and PD blocks are combined to form 

a closed-loop control block for each joint. This block is pictured in Figure B.4(c). 

B.3.3 Visual Servo Controller in Simulink 

The goal of the visual servo controller is to control the position of the robot in a 

vertical plane. In other words, two joints of the robot will be directly controlled 

to move the (x, y) coordinates of the end-effector, as shown in Figure. The visual 

servo controller uses the joint space control law derived in Appendix A to determine 

the required joint angles to move toward a set position. These joint angles are then 

given as desired joint angles to each joint's PD controller. The output of the PD 

controller is the voltage needed to actuate the joint motors. With this configuration, 
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(a) Joint Block (b) PD Block 

( c) Closed-loop Joint Controller 

Figure B.4: Quanser Simulink building blocks for robotics control 

the controller is actually structured as two closed-loop controllers. The joint PD 

controllers stabilize each joint while the visual servo controller provides closed-loop 

position feedback. This configuration is termed dynamic look-and-move [49]. 

The dynamic look-and-move method is common in the visual servo literature, and 

is significantly more stable than using the visual servo controller to directly provide 

a voltage input to the actuators. This is due to the sampling rate of each loop. 

Visual servo is limited by the sampling rate of the camera, which is often limited to 

30 Hz. The encoder controller loop however, is free to run at a much higher speed 

since much less data needs to be processed and transmitted. The joint controller 

operates at 1 kHZ. Using the two controllers in tandem uses the advantages of both: 

increased positioning accuracy of visual servo and more stable joint control of the 

encoder stabilized loop. 

A Simulink block diagram was developed, taking into account the above concepts. 

The controller block diagram is shown in Figure B.5. The controller is divided into two 
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Figure B.5: Simulink block diagram of visual servo controller 

sections, with a visual servo loop and an encoder loop for each joint. The visual servo 

loop begins with the image features block. This block constantly receives the current 

position, in image space, of the robot's end effector. This position is subtracted from 

the desired position, producing the error signal. The error signal is then multiplied 

by the appropriate gains. The error signal, derivative of the error, and integral of 

the error terms go through the visual servo block, which implements equation A.20. 

The resulting joint velocities, e are integrated, producing e set-points for the joint 

controller. These joint commands are translated to motor voltages by each joint's PD 

control blocks, as discussed in the previous section. 
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B.3.4 Camera and Controller Communication with Ethernet 

The robot control and optical flow tasks operate on separate PCs. This occurs since 

both need specific hardware (Le. NVIDIA graphics card, MultiQ board) to operate. 

A dedicated Ethernet link, operating at 100 Mbjs, connects the two computers. The 

TCP JIP protocol was used to transmit the data in packets. Each feature point 

coordinate (Le. (x, y)) is sent as one packet, to ensure that a complete visual servo 

point is received, even if packets are lost. 
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Appendix C 

CUDA Source Code 

This appendix includes listings of the key source code used to implement the foveated 

optical flow system, with accompanying explanation. Since CUDA source code is dis­

tinct from standard C++ code, the inclusion of the source code illustrates the imple­

mentation details of the algorithms presented in Chapter 3. The log-polar transform, 

optical flow, and foveation point selection kernels are detailed in this chapter, along 

with the host-side code responsible for launching the kernels. 

C.l Log Polar Transform Kernel 

The log polar transform kernel accepts a cartesian image as an input (d_carl) and 

returns a log-polar transform image (d_log). Source code for the kernel is included in 

the listing below. It is important to realize that each thread will execute the same 

instructions, but will access different data. F\lrthermore, the kernel is executed by 

the GPU and it is assumed that the images are already in global memory. The first 

step in the code is to calculate the array index that the thread will access in the LPT 
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image. This is done by multiplying the index of the current thread block (blockldx.x) 

by the dimension of each block (blockDim.x) and adding the index of the current 

thread (threadldx.x) , as shown on line 10. The IMUL macro is used to perform an 

accelerated integer multiplication, since integer multiplication is slower on the GPU 

than floating point multiplication. 

Once the thread has calculated the array index of the LPT image it is accessing, 

this is transformed to a (u, B) value (line 20). This information is then used to 

calculate the correct (x, y) coordinate to sample in the cartesian image using the log-

polar transform equations. Padding correction is then applied and the correct pixel 

is transferred from the cartesian image to the log-polar image. These operations are 

carried out starting on line 26 of the listing. 

Listing C.1: Log Polar Transform kernel 

2 II GPU KERNEL (LOG POLAR TRANSFORM) 

4 __ global __ void logpolartrans_gpu (float *d_cart I float *d_log, int W, int padsize I unsigned long 

logSize I float fovea_ex I float fovea_cy I float rho_o I float u_min I float du, iot numRings) 

{ 

6 int uindx I thetaindx I x I Y j j 

float rho, U , theta; 

8 

II Generate indez of log polar image thread in current block accesses 

10 unsigned long idx = IMUL( blockDim. x, blockldx. x) + threadldx. x; 

unsigned long idx2 j 

12 

idx = (idx <= logS ize - 1) ? idx : logSize - 1; 

14 

II Find index of log polar image in (u, theta) format 

16 uindx = floorf(idx / (float)w); 

thetaindx = idx - IMUL( uindx, w); 

18 

II Convert uindx and thetaindx to u and theta 

20 u = (float) uindx * du + u_min; 

theta = thetaindx * CONVFAGIDH.; 

22 

II Calculate rho 

24 rho = rho_o * __ expf(u); 

108 



M.A.Sc. Thesis - Peter Kuchnio McMaster - Electrical Engineering 

26 II Calculate cartesian :z; and y coordinates 

x = floorf( rho * eosTable[(int)theta] + 0.5f) + fovea_ex; 

28 y = floorf( rho * sinTable[(int)theta] + 0.5f) + fovea_ey; 

30 x = ( x >= 0) ? x : 0; Ilmake sure not out of bounds 

x = ( x <= imWidth-l) ? x : imWidth - 1; 

32 y = ( y >= 0) ? y : 0; 

y = ( y <= imHeight -1) ? y : imHeight - 1; 

34 

II Get index in cartesian map 

36 unsigned long cartindx = 0 i 

eartindx = IMUL(y, imWidth) + x; 

38 

II Apply padding correction 

40 y = floor(idx / (float)w); 

x = idx - Y*Wj 

42 idx2 = y * (w + padsize) + x; 

44 II Store pixel in LPT image 

d_log [idx2] = d_cart [eartindx]; 

46 

__ synethreads () ; 

48 

C.2 Optical Flow Kernel 

The optical flow kernel is the most computationally-intensive kernel in the system. As 

discussed in Chapter 3, the kernel takes as an input two LPT images, corresponding 

to frames I(t) and I(t - dt), bound to textures. The use of textures accelerates 

memory access since texture memory is cached, unlike regular global memory access. 

The downside is that texture memory is read-only, therefore the resulting optical flow 

vectors are stored in the arrays d_x and eLy, both in global memory. 

The kernel begins by allocating shared memory for the pixel patches PI and 

P2 , as well as space to stage a coalesced write to global memory (StoTeStage_x and 

StoTeStage_y). It is important to note that the shared memory is allocated one for the 
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entire thread block, using the __ shared __ specifier, as shown on lines 5-9. Once shared 

memory is allocated, each thread calculates the index of the pixel it is accessing in 

the LPT image. This data is then loaded into shared memory. The tex2D function is 

used to access texture memory, illustrated on line 37. The FIPATCH and F2PATCH 

macros are used to write to the shared memory arrays flPatch and f2Patch. 

It is important to note that that the procedure for loading data from frame J(t) 

is different than for frame I(t - dt). Each thread block consists of 16 x 16 threads. 

Therefore, each thread can load one pixel from frame J (t - dt), completing the loading 

operation in one step. Pixel patch P2 , which is loaded from frame J(t), has an 

additional apron required for the correlation-based search, therefore more pixels exist 

than threads in the block. Therefore, the load is performed in two steps. One the 

load has finished, all threads are synchronized and the correlation search algorithm 

begins. The load into patch g occurs on lines 32-37, while the load into patch P2 

occurs on lines 44-62. 

Only threads that correspond to active pixels (not to apron pixels) participate 

in the search. Each thread calculates one motion vector. This is done by step­

ping through every possible displacement in frame I(t) and for each displacement 

calculating the SSD (lines 68-122). Once the minimum SSD has been found, the cor­

responding motion vector is stored in shared memory. Once all motion vectors in the 

thread block have been found, the threads are again synchronized and the coalesced 

store to global memory begins. Since the thread block is 16 x 16 threads in size, but 

the storage stage is 32 x 16 pixels wide, each thread is responsible for writing two 

pixels. Since there are two storage stages for the x and y components, each thread 

performs four write operations in total. A width of 32 for the storage stage is required 
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to meet memory alignment requirements. The coalesced store to global memory IS 

organized starting on line 128. 

Listing C.2: Optical Flow kernel 
I I CPU KERNEL (OPTICAL FLOW) 

2 __ global __ void opticalflowxy_gpu(f1oat *d_fl) float *d_f2 I float *d_x, float *d_y, int W, int hi 

unsigned long imarrsize, float dU J float u_min, float rho_o, bool foveated = true) 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

II Shared memory for pixel patches 

__ shared __ float flPatch [16][16]; 

__ shared __ float f2Patch[16+2*n][16+2*n]; 

II Shared memory for coalescing global memory store 

__ shared __ float StoreStage_x[16][32]; II x component 

__ shared __ float StoreStage_y [16] [32]; II y component 

float sum=Oj 

volatile int ix I iy i 

volatile int ox, 0Yi II Offset of current thread block J important for deformation 

correction 

canst float threadIdx_x 

canst float threadIdx_y 

IMUL(MODDIMX, blockIdx .x}; 

IMUL(MODDllVIY, blockldx .y}; 

ox threadldx_x j oy threadIdx_y i 

II Initialize storestage array 

StoreStage_x[threadIdx.y][threadIdx.x] = O.Of; 

StoreStage_x [threadIdx. y] [ threadIdx. x+16]= 0.0 f; 

StoreStage_y[threadIdx.y][threadIdx.x] = O.Of; 

StoreStage_y [threadIdx. y] [ threadIdx. x+16]= 0.0 f; 

~============================================= 

II Calculating variables for the storage stage (coalesced access) 

int prefix j 

IX = floor ((threadIdx_x) / 16.0f} * 16; 

prefix = (threadIdx_x) - IX; 

II Index of pixel accessed by current block in f1 

IY threadIdx_y + threadIdx.y + n; 

IX threadldx_x + threadIdx.x + n; 

II Load 16 x 16 patch from f1 (of which 12 x 12 pixels are active) 

FIPATCH(threadIdx.y, threadIdx.x} = 255.0f * tex2D(fl, IX / (float}w, IY / (float}h); 

II 
II Load 20 x 20 patch from f2 

II making 16x16 (256) threads load 400 pixels 
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II Generate a variable (thread_num) that goes from 0 to 255. Then refactor this number 

into x, y coordinates 

/ / assuming we're working with a 20x20 square 

volatile int thread_num = threadIdx.y * 16 + threadldx .x; 

int tx I ty j 

ty floor(thread_num / (float)(I2Size)); 

tx thread_num - IMUL(ty, I2Size); 

II Batch 1 ->First 256 pixels 

IY threadIdx_y + ty; 

IX threadIdx_x + tx; 

F2PATCH(ty, tx) = 255.0f * tex2D{f2, IX / (float)w, IY / (float)h); 

II Batch 2 

thread_num = IMUL( threadIdx. y, 16) + threadIdx. x + 256; 

ty floor (thread_num / 20.0 f); 

tx thread_num - IMUL(ty, 20); 

if (thread_nurn <= (I2Size * I2Size)) { 

IY = threadIdx_y + ty; IX threadldx_x + tXj 

F2PATCH(ty, tx) = 255.0f * tex2D{f2, IX / (float)w, IY / (float)h); 

__ syncthreads () ; 

~============================================= 

II Perform search J each thread takes one pixel in final image (i. e: one of the 12::&12 

threads) 

if (threadIdx. x < ActivePixels && threadIdx. y < ActivePixels) { 

float rninVal = 10000000.0 f; float threshVal = 0.01 f; 

volatile float d_x=O.Of, d_y=O.Of, prod; 

volatile int x, Y Ii, j I indxl, indx2 j 

II Deformation calculation variables 

float ul, u2, rl, r2, xl, x2, yl, y2j 

IX threadIdx. x + I2Apron; IY threadIdx . y + I2Apron; 

for (y = IY - n; y <= IY + n; y++) { 

for (x IX - n; x <= IX + n; x++) { 

II Inner search, evaluating match strength 

SUlvI = 0.0 f; 

for (j = y - v; j <= y + v; H+) { 

for ( i = x - v; i <= x + v; i++) { 

indxl threadIdx.y + v + 

indx2 threadIdx.x + v + 

(j 

(i 

y) ; 

x) ; 

prod = F2PATCH(j , i ) F1PATCH( indx1 , indx2) ; 

SUlvI = SUlvI + prod * prod; 
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if (SUM < minVal II (SUlvI = minVal && y 

minVal = SlRYIj 

IY && x IX)) { 

II ======= DEFORMATION CORRECTION ======== 
II For our purposes, r = y, theta = :z; 

if (foveated) { II INCLUDE DEFORMATION CORRECTION 

else 

u1 du * (oy + IY + n + v) + u_min; 

u2 du * (oy + y + n + v) + u_min; 

r1 exp(ul)*rho_o j 

r2 exp(u2)*rho_o; 

xl r1 * cosTable [ox + IX+n+v]; 

x2 r2 * cosT able [ox + x+n+v]; 

y1 r1 * sinTable [ox + IX+n+v]; 

y2 r2 * sinTable [ox + x+n+v]; 

indx1 = (x2-x1); indx2 = (y2-y1); 

d_x = indxl j d_y = indx2 j 

I I WITHOUT DEFORMATION CORRECTION 

indx1 = -(x-IX); indx2 = -(y-IY) ; 

d_x = indxl j d_y = indx2 i 

II Store motion vectors in shared memory 

StoreStage_x[threadIdx.y][threadIdx.x+prefix] 

StoreStage_y [threadIdx. y I [threadIdx. x+prefix] d_y; 

__ syncthreads () ; 

II ====== COALESCED STORE TO GLOBAL MEMORY ========== 
II Starting point of write operation, making sure its a multiple of 16 

if (threadIdx.y < ActivePixels) { 

IY threadIdx_y + threadIdx.y; 

IX floor«threadIdx_x / 16.0f)) * 16; 

volatile unsigned long idx i 

IIWrite block 1, 0->16 

IX = IX + threadIdx. x; idx IMUL(IY,w) + IX - (n+v); 

if (threadIdx.x >= prefix && threadIdx.x <= prefix + ActivePixels -1) 

d_x [idxl 

d_y [idx] 

StoreStage_x[threadIdx.y][threadIdx.x]; 

StoreStage_y[threadIdx.y][threadIdx.x]; 
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C.3 

else { 

d_x [idx] = d_x [idx] ; 

d_y [ idx] = d_y [idx ] ; 

//Write block 2, 16->92 

IX = floor (threadIdx_x / 16.0 f) • 16; 

IX = IX + threadIdx.x + 16; 

idx = IMUL(IY,w) + IX - (n+v); 

if (threadIdx. x+16 >= prefix && threadIdx. x+16 <= prefix + ActivePixels -1) 

d_x[idx] = StoreStage_x [threadIdx .y] [threadIdx.x+16]; 

else 

d_y [idx] = StoreStage_y [threadIdx . y] [ threadIdx . x+16]; 

d_x[idx] = d_x[idx]; 

d_y[idx] = d_y[idx]; 

Foveation Point Selection Kernel 

The foveation point selection kernel finds the next foveation point for the optical flow 

system. The foveation point is chosen to be the centroid of the region of the image 

that has experienced the greatest movement. The first step, therefore, is to perform 

a motion segmentation step, reducing the motion vectors below a threshold to zero. 

A source code listing for the foveation point selection kernel is shown below. 

The kernel begins by determining which array element in the motion vector array 

IS accessed by each thread (line 11). The corresponding (u, e) coordinate is then 

calculated and used to find the correct array element to access given the extra padding 

added to the image (line 25). The magnitude of the motion vector is then found and 

stored in the shared memory array xLocal. The value is then thresholded, with 1 

being stored in the array if the motion vector magnitude was above the threshold and 
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o being stored otherwise. This is performed on lines 28 and 29. 

The (x, y) coordinate corresponding to the current (u, B) is then calculated. The 

local centroid is then calculated and stored in the xLocal and yLocal arrays. In other 

words, xLocal and yLocal store the x and y components of the centroid. It should be 

noted that the xLocal array serves two purposes. Before it stores the x component 

of the centroid, it stores the thresholded motion vector magnitude. This was done 

to conserve shared memory space. The thresholding operation is performed on lines 

41-43. 

Once all pixels have been multiplied by the threshold, a single thread in the block 

completes the algorithm by summing up the centroids and dividing by the number of 

non-thresholded pixels left. This is shown on lines 50-64. The local centroid is then 

stored in global memory and returned to the host for further processing. 

Listing C.3: Foveation Point Selection Kernel 
1 I I FOVEATION POINT SELECTION 

__ global __ void interestcent_gpu (float *rl_cx, float *d_cy, int *rl_npts I float *d_x I float *rl_y, 

int W, float padding 1 float dU J float u_min, float rho_o J float fovea_ex I float fovea_cy, 

unsigned int sizeLog) 

3 { 

__ shared __ float xLocal [ThreadsPerBlock]; II shared memory for local calculation of 

centroid 

5 __ shared __ float yLocal [ThreadsPerBlock]; 

7 IIEach block loads its data into shared-mem 

liTo conserve shared mem, d_mag values are first stored in xLocal 

9 unsigned long idx I idxPAD i 

11 idx = IMUL(blockDim.x, blockldx.x) + threadldx.x; 

idx = (idx <= sizeLog - 1) ? idx : sizeLog - 1 j 

13 

II Each thread converts idx value to (u, theta), then (x, y) 

15 II ---> idx to (u, theta) 

float uindx I theta, rho I U J X I Y i 

17 

uindx = f1oor(idx / (float)w); 

19 theta = idx - uindx * Wj 

II ---> (u, theta) to (x, y) 
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u = «float)uindx + n + v) * du + u_min; 

rho = rho_o * __ expf(u); II Calculate rho 

II Apply PADDING correction 

idxPAD = uindx * (w + padding) + theta; 
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I I Thresholding 

xLoeal [threadldx. x] 

xLoeal[threadldx.x] 

sqrt (d_x [idxPAD] * d_x [idxPAD] + d_y [idxPAD] * d_y [idxPAD]) ; 

(xLoeal[threadldx.x] > THRESHOLD && xLoeal[threadldx.x] < 20.0f) ? 

1.0f : O.Of; 

II Calculate cartesian x and y coordinates 

x 

y 

floorf( rho * eosTable[(int)theta + n + v] + 0.5f) + fovea_ex; 

floorf( rho * sinTable[(int)theta + n + v] + 0.5f) + fovea_ey; 

x x >= 0) ? x : 0; 

x <= imWidth-1) ? x imWidth - l' 

y y>= 0) ? y : 0; 

y y <= imHeight-1) ? y imHeight - 1; 

II multiply y by d_mag[id"'l (stored in ",Loeal[threadId",j) , store in yLocal 

yLoeal[threadldx.x] = y * xLoeal[threadldx.x]; 

II multiply", by d_mag[id"'l 

xLocal [threadIdx ox] = x * xLocal [threadldx ox} i 

II One thread calculated centroid, calculates n (# oj non-thresholded pixels) 

II Stores in global me 

int i=O, npts=Oj float cx=O.Of I cy=O.Of; 

__ synethreads () ; 

I I Calculate centroid 

if «float)threadldx.x 0.0 f) { 

for (i = 0; i < ThreadsPerBloek; i++) { 

ex += xLoeal[i]; ey += yLoeal[i]; 

if (xLoeal[i] > 0) 

npts++; 

II Write local centroid to global memory 

d_ex[bloekldx.x] = ex; d_ey [bloekldx. x] 

d_npts[blockldx.x] = npts; 

__ syncthreads () ; 
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C.4 Host Code 

The host code is responsible for allocating and transferring memory between the host 

and graphics card and launching the CUDA kernels. As such, the host code can be 

considered the top level code for the system. Several parts of the code have been 

abbreviated to save space. Likewise, the code that loads and stores video sequences 

in system RAM is not shown. It is also important to note that the host and GPU 

code can run concurrently. In other words, the host does not stop executing code 

after a kernel is launched on the GPU. Several conditions on GPU /CPU concurrency 

do exist however, and are detailed more fully in section 3.1.8. The source code listing 

for the host-side code is presented below. 

The first line initializes the graphics card, followed by a series of variable dec­

larations and memory allocations which have been omitted to save space. Prior to 

the start of the video processing loop, the first frame of the video sequence is copied 

from system RAM to GPU global memory using the cudaMemcpy function call. The 

arrays d-fl and d-f2 store frames I(t - dt) and I(t) in cartesian coordinates while 

arrays d_logl and d_log2 store frames I(t - dt) and I(t) in log-polar coordinates. All 

four arrays are stored in GPU global memory so that they can be accessed by the 

kernels described above. 

The video processing loop now begins and steps through all frames in a given video 

sequence, starting on line 13. The log-polar transform of frame I(t - dt) is computed 

first, frame I(t) is copied to global from system memory and the log-polar transform 

of that frame is found. The pointers to the two frames are now swapped so that on the 

next iteration of the loop frame I (t) is now I (t - dt). These steps are executed on lines 

15-24. The next step in the process is texture memory setup. As discussed in chapter 
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3, the optical flow kernel uses texture memory to accelerate memory access. In order 

to bind an image to texture memory, the data must be transferred to a construct 

called a CUDA array. This is accomplished using the cudaMemcpyToArray function, 

after which the array is bound as a texture using the cudaBindTextureToArray call. 

Texture binding is performed on lines 30-35. The optical flow kernel now executes, 

with the motion vectors being returned in the arrays d_x and d_y, as shown on line 

42. 

The next step in processing is the determination of the next foveation point. The 

CUDA kernel interestcenLgpu calculates the local centroids, as discussed above. This 

kernel is called on like 45. The results are then transferred to system RAM where the 

CPU calculates the final centroid. This value is then assigned as the next foveation 

point. After all frames have been processed, memory on both the graphics card and 

host is released and the graphics card is released. 

Listing C.4: Host source code 
I I Main Program - HOST 

2 int maine int argc I char** argv) 

4 II Initialize device 

CUT_DEVICEJNIT(argc, argv); 

6 

( ... Variable declarations and memory allocation ... ) 

8 

II Copy first frame oj video sequence to device memory 

10 cudaIvlemcpy (d_fl I imFrames [0] . h_img I memsizeArr I cudaMemcpyHostToDevice) j 

12 11------------ PROCESS VIDEO FRAMES -----------

for (j = 1; j <= NUMFRAME3; H+) { 

14 II Calculate Log polar transform of frame I(t-dt) 

16 

18 

20 

logpolartrans_gpu «<gridSizeTrans, blockSizeTrans»> (d_fl, d_logl, NTheta, 

PADDING, sizeLog I fovea_ex, fovea_cy I rho_o I u_min I du I NRings) j 

II Copy current frame J I{t)J to device memory 

cuda:rviemcpy (d_f2 I imFrames [j ] . h_img I memsizeArr I cuda1vlemcpyHostToDevice) i 

II Calculate Log Polar transform of frame I(t) 
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logpolartrans_gpu «<gridSizeTrans, blockSizeTrans»> (d_f2, d_Iog2, NTheta I 

PADDING, sizeLog I fovea_ex, fovea_cy, rho_o, u_mill, du, NRings) j 

II Swap frame I(t) and I(t-dt) by flipping pointers 

swapPtr(&d_fl, &d_f2); 

11----------------------------------------------------------
II --> Optical Flow 

11--------------------------------------------------------
II Transfer LPT transformed images to GUDA arrays so they can be bound to textures 

for optical flow step 

cudaMemcpyToArray( fl_array I 0, 0, d_Iogl, memsizePad, cudaMemcpyDeviceToDevice) i 

cudaMemcpyToArray (f2_array, 0 I 0 I d_Iog2 I memsizePad I cudaMemcpyDeviceToDevice) j 

II Bind the array to the texture 

cudaBindTextureToArray ( £1, fl_array I channelDesc) j 

cudaBindTextureToArray ( f2, f2_array, channelDesc); 

II Initialize kernel size 

dim3 blockSize (16, 16); 

dim3 gridSize (gridWidth, gridHeight); 

II Execute Optical Flow Kernel 

opticalflowxy_gpu «<gridSize, blockSize»> (d_logl I d_log2 I d_x, d_y, logWidth, 

logHeight I sizePad I du , u_min I rho_o I true); 

II ==========~» INTEREST PT SELEGTION«================ 

interestcent_gpu «<gridSizeTrans, blockSizeTrans»>(d_cx, d_cy I d_npts, d_x I d_y, 

logWidth I PADDING, du I u_min, rho_o I fovea_cx I fovea_cy I size Log ) ; 

II move results back to host 

cudaMemcpy(h_cx I d_cx I sizeof(float)*calcGridSize I cudaMemcpyDeviceToHost) i 

cudalvlemcpy(h_cy I d_cy I sizeof(float)*calcGridSize I cudaMemcpyDeviceToHost) j 

cudaMemcpy( h_npts, d_npts, sizeof( int) * calcGridSize, cudaIvlemcpyDevieeToHost) j 

II Sum up local centroids returned from GPU and return the final 

II centroid: (cx, cy) 

CalculateCentroidOnCPU () ; 

II Assign new foveation pt 

fovea_cx ex i 

eyj 

II Synchronize threads 

cudaThreadSynchronize () j 

II Move result back to host 

cUdalvlemcpy(h_dx I d_x I memsizePad I cudaNlemcpyDeviceToHost) j 

cudalvlemcpy(h_dy, d_y I memsizePad I cudalvlemcpyDeviceToHost); 
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68 

70 . .. Release Memory ... ) 

72 II Release device 

CUT-EXIT(argc, argv); 

74 
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