Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8772
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWeatherly, G.C.en_US
dc.contributor.authorDynna, Marken_US
dc.date.accessioned2014-06-18T16:43:55Z-
dc.date.available2014-06-18T16:43:55Z-
dc.date.created2011-03-08en_US
dc.date.issued1993en_US
dc.identifier.otheropendissertations/3949en_US
dc.identifier.other4966en_US
dc.identifier.other1858790en_US
dc.identifier.urihttp://hdl.handle.net/11375/8772-
dc.description.abstract<p>The energies of one and two-dimensional dislocation arrays lying near<br />a free surface are evaluated directly from the stress fields of single dislocations<br />in a half-space. These results are used to obtain expressions giving the<br />equilibrium spacings of a number of different arrays relieving misfit in a<br />strained epitaxial system. Numerical calculations are performed for the case of<br />edge and 60º dislocations relieving strain in a silicon-germanium layer<br />deposited on a silicon substrate. This method is also used to calculate the<br />energies of various low angle grain boundaries in a half-space.</p> <p>Single-ended dislocation sources are observed using transmission<br />electron microscopy in two short-period Si-Ge superlattices grown on Si(100).<br />Their formation is linked to the development of non-planar layers during the<br />growth of the superlattices. The relaxation of these superlattices takes place<br />at significantly lower temperatures than equivalently strained homogeneous<br />epilayers.</p> <p>Si-Ge short period superlattices deposited on Si(100) are shown to<br />relax through twinning on {111} planes if the deposited layers become grossly<br />non-planar. Twinning is accompanied by the formation of a diamond<br />hexagonal phase. No 60· a/2(110) dislocations relieving misfit are present in the strained layer structure.</p> <p>The nature and origin of a new type of defect in Si₁_ᵪGeᵪ/Si strained<br />layer structures, the "pagoda" defect, is studied using transmission electron<br />microscopy. The defects are found to propagate in a direction determined by<br />the position of the Si source in unrotated substrates, and to have their origin<br />in the role played by SiC particles (left after cleaning the substrate) during<br />the growth process. Pits that form at the SiC particles are preserved during<br />MBE growth and perturb the strained layers, leading to the formation of<br />pagodas.</p>en_US
dc.subjectMaterials Science and Engineeringen_US
dc.subjectMaterials Science and Engineeringen_US
dc.titleDefects in Silicon-Germanium Strained Epitaxial Layersen_US
dc.typethesisen_US
dc.contributor.departmentMaterials Science and Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.61 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue