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Abstract

The energies of one and two—dimensional dislocation arrays lying near
a free surface are evaluated directly from the stress fields of single dislocations
in a half-space. These results are used to obtain expressions giving the
equilibrium spacings of a number of different arrays relieving misfit in a
strained epitaxial system. Numerical calculations are performed for the case of
edge and 60" dislocations relieving strain in a silicon-germanium layer
deposited on a silicon substrate. This method is also used to calculate the

energies of various low angle grain boundaries in a half-space.

Single-ended dislocation sources are observed using transmission
electron microscopy in two short—period Si-Ge superlattices grown on Si(100).
Their formation is linked to the development of non-planar layers during the
growth of the superlattices. The relaxation of these superlattices takes place
at significantly lower temperatures than equivalently strained homogeneous

epilayers.

Si~-Ge short period superlattices deposited on S5i(100) are shown to
relax through twinning on {111} planes if the deposited layers become grossly
non-planar. Twinning is accompanied by the formation of a diamond

hexagonal phase. No 60° §(110) dislocations relieving misfit are present in the

(iii)



strained layer structure.

The nature and origin of a new type of defect in Si, Ge/Si strained
layer structures, the "pagoda" defect, is studied using transmission electron
microscopy. The defects are found to propagate in a direction determined by
the position of the Si source in unrotated substrates, and to have their origin
in the role played by SiC particles (left after cleaning the substrate) during
the growth process. Pits that form at the SiC particles are preserved during
MBE growth and perturb the strained layers, leading to the formation of

pagodas.
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CHAPTER 1

Introduction

Silicon—germanium heteroepitaxy is a subject of current interest — the
growth of strained layer structures in this lattice—mismatched system by
techniques such as molecular beam epitaxy or chemical vapour deposition is
believed to hold considerable technological promise. Strain-induccd
modifications of the bandgap make possible the design of electronic and
optoelectronic devices which are unobtainable using unstrained silicon. An
important example of an electronic device making use of Si-Ge strained layers
is the Si~Ge/Si heterojunction bipolar transistor (Patten et el 1990).
Optoelectronic devices include the p-i-n diode (Lang et al. 1985) and the
Si, . Ge,/Si digital optoelectronic switch (Kovacic et al 1991). However, the
effective manufacture of such devices requires that the strained layers be
essentially free of defects such as dislocations, stacking faults, and twins, and
therefore an understanding of the relationship between defect formation and
the geometrical structure of the device, the conditions under which it is

grown, and its subsequent processing treatments is crucial.

This thesis examines the formation of defects in various Si-Ge
strained layer structures deposited on Si(100). Homogeneous epilayers,

Si,..Ge,/Si superlattices and short-period (Si Ge,), superlattices grown by



molecutar beam epitaxy at the National Research Council in Ottawa were
studied using transmission electron microscopy. A variety of defects were
found in the as-grown material, including dislocation sources, twins, second
phases, and the "pagoda defect". Interfacial perturbations play an important
role in generating all of these defects. The evolution of the defect structure on
annealing at higher temperatures was examined in as—grown samples
containing twins and dislocation sources. Experimental results a.ré discussed in

chapters 5, 6, and 7.

In addition to the experimental work, there is a section of theory
(chapter 3) concerning the energetics of dislocation arrays in strained epitaxial
layers. This is applied to the problem of the critical thickness (the thickness
at which it becomes energetically favourable to introduce a dislocation or
array of dislocations to the strained layer) and equilibrium dislocation spacing
in Si—Ge strained layers deposited on Si(100). It is also shown that the
method used in these calculations may easily be adapted to give the energies
of various low angle grain boundaries near a free surface, and, as a limiting

case, corresponding energies in an infinite crystal.



CHAPTER 2

Review

2.1. The Growth of Heteroepitaxial Films

2.1.1. Systems in which there is Perfect Lattice Matching

A) Initial Stages of Film Deposition

Consider the deposition under near—equilibrium conditions of a thin
film of a single atomic species on a substrate. The surface energies which are
important in this process are those of the substrate, 1, the film, 7;, (assumed
here to be isotropic), and the interface, 7;,, where 7;, = 7% + % — f and §
is the adhesion energy between the substrate and the film. The
supersaturation of the system is defined by Au = p — p,, where p, is the
chemical potential of the solid film at the growth temperature and pressure,
and p is the chemical potential of the material in the vapour phase. When a
volume V; of the film is deposited on the substrate, the change in the free

energy of the system is

AG = —AﬁVf + '}'fAf + 7inAin - 75Ain! (2.11)



where A; and A;, are the surface area of the film and the area of the
interface. There are two possibilities. If the film does not completely wet the
substrate, it condenses on the substrate in the shape of a spherical cap with a

wetting angle # given by the following balance of interfacial tensions:

T = %a T Yecosd, (2.1.2)
so that
cosd = 1&%@- . ccid < L. (2.1.3)

Thus partial wetting occurs when

Ts = Tin < "o
that is,
T+ Tm = % >0 = (214)
or
B < 2% (2.1.5)

Then



AG(r) = {- $mrip + 4m{(2 + cosd)(1 — cosf)’/4},  (2.1.6)

where r is the radius of the truncated sphere. In this case Ap must be
greater than zero in order for the film to grow, and there is an energy barrier

which must be overcome before stable nuclei carn be formed. The activation

energy is
* 16T 2
AG = —5(2 + cosf)(1 — cosl) /4, (2.1.7)
34p

and there is a critical nucleus radius of

I o= % : (2.1.8)

Since three—dimensional nuclei are required in order for the film to form,
growth proceeds via the formation of islands. This mechanism is known as the
Volmer-Weber growth mode (Volmer and Weber 1926). The extent of surface
roughness may be minimized by letting Ap become large so that the height of
the islands is reduced and that many nuclei quickly merge together

(Bauer and van der Merwe 1986).

If § > 27, then the film completely wets the substrate, and, ignoring

the presence of film ledges,

AG = —A#Vf + ']'fA{ + (75 + T~ ﬂ - 7S)Af
= -ApVe + (27 — B)Ap (2.1.9)



There is no activation energy barrier which must be overcome in depositing
the film, and growth may take place even at undersaturation (Ap < 0). The
film goes down as a flat two—dimensional deposit. This sort of growth, which

occurs when

Y+ Y~ T <0 (2.1.10)

is known as the Frank-van der Merwe mode. It is the preferred condition for
hetercepitaxial growth. The two inequalities (2.1.4) and (2.1.10) are together
known as the Bauer criteria (Bauer 1958), and predict the growth mode of

lattice—matched systems in near—equilibrium conditions.

The conditions under which 2D growth is possible may also be
expressed in terms of relative bond energies. Letting ¢p;, ¢, and ¢ be the
bond energies between atoms in the film, atoms in the substrate, and atoms
in the film with atoms in the substrate, respectively, and considering only
nearest neighbour interactions gives 7 = §Cég, 7 = $Cdg, and f = Cdgy,
where C is a constant. When ¢4 > ¢¢, A > 27, and two—dimensional

growth is possible, while if ¢g > ¢, island growth takes place.

B) Later Stages of Film Growth

Once the substrate has been completely covered by the film, it is of
course no longer necessary to wet the substrate. In addition, the interaction

between the deposited atoms and the substrate decreases. In the case of a



film which completely wets the substrate, the change in the free energy of the

system on the deposition of the n*"® monolayer is
AG = —ApV; — B,As, (2.1.11)

where (, represents the interaction of the n'" monolayer with the substrate.
Growth may proceed at appreciable undersaturations for several monolayers,
after which the process becomes essentially one of homoepitaxy. In the case of
a film which partially wets the substrate, the forces which initially caused the
formation of islands are no lomger present. In fact, it becomes energetically
favourable for the surface to smooth itself. The extent to which this is

possible depends on the kinetics of the process.
C) The Growth of Superlattices

If, in a system with perfect lattice matching, a superlattice is to be
formed, the alternate deposition of at least two species of atoms is required.
When the growth of F on S is followed by the growih of § on F it is
impossible to achieve a true state of continuous two—dimensional growth, for
if % + Y, — % < 0 and F grows smoothly on S, which has a higher surface
energy, then 75 + 7, — 7% > 0 and the growth of § on F proceeds via
island formation. If +, and «; differ stri)hgly then it is impossible to prevent
the formation of a very rough layer of'“S',-.j\but if 4, & 9 and 7;, is small,
then the condition of two—dimensional _growth may be approached

o

(Bauer and van der Merwe 1986).



2.1.2. Systems in which there iz Uniform Lattice Mismatch
A) Initial Stages of Film Deposition

When the material being deposited under near—equilibrium conditions
has a different lattice parameter than the substrate, it is placed in a state of
strain when it condenses on the substrate. The change in the free energy of

the system on the deposition of a volume V; on the substrate is

f

f

where

*-[Vfa ij fijdvf

accounts for the elastic strain in the flm.

If § < 2y, growth will proceed at once through the formation of
islands, as in the case of unstrained systems. However, the degree of surface
roughness will be augmented as the system moves to lower its elastic strain
energy. Two—dimensional growth under these conditions is impossible. If
B > 27, there is a basic tendency for the film io wet the substrate. For a

deposited layer which remains flat, the change in the free emergy of the



system (ignoring the presence of film ledges) is given by

2
AG = —DpV, + (27 — AA; + %{—_‘1*—;5 , (2.1.13)

where h is the height of the monolayer and f is the lattice mismatch strain.
However, some of the strain emergy of the system may be relieved through
the development of perturbations in the growth surface of the film. If the
energy relieved is greater than the increase in the total surface energy of the
film and the eneigy required to move material further away from the
substrate, then the basic morphology of the film is no longer two—dimensional.
Growth takes place at once in the Volmer—-Weber mode, although for different
reasons than in the case of unstrained systems. In general this will happen
when v and § are small and ¢ is large, although the precise details (even in
the case of an isotropic film surface energy) are very difficult to work out

because of the complexity of the elasticity problem.
B) Later Stages of Film Growth

After the substrate has been completely covered by the growing film,
the further development of the surface morphology of the film is determined
by the decreasing interaction of the deposited atoms with the substrate and
the driving force for elastic relaxation. In the case of a film which initially
only partially wets the substrate, the strain inherent in the system prevenis
the formation of a smooth interface. In the case of a film which has § > 27

but immediately develops a rough surface because of elastic strain, the
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roughness of the surface will tend to increase as the interaction of the
deposited atoms with the substrate provides less of a counterbalance to elastic
relaxation. If the film initially forms a smooth deposit on the substrate, a
transition to island growth will take place when the interaction of the
deposited material with the substrate falls below a critical  value.
This type of growth is known as the Stranski-Krastonov mode
(Stranski and Krastonov 1938), and is the characteristic mode of growth in

many lattice mismatched systems.

2.1.3. Si-Ge/Si(100) Heteroepitaxy

A) The Growth of Si on Si(100)

It has been established that the Si(100) surface takes on a 2x1
reconstruction in which pairs of surface atoms, each atom having two dangling
bonds, form dimers in order to lower their emergy. Surface atoms are shifted
from bulk lattice positions over a distance of approximately 0.45 A in the
direction of the surface dimer (Tromp, Smeenk, and Saris 1981). This
deviation from bulk lattice positions drops off rapidly on moving into the
solid — the displacement of atoms in the layer next to the surface is less
than 0.2 A. There is also a slight inward relaxation of the surface of
0.08 = 0.03 A. As a result of recomstruction, the surface crystallography of
Si(100) has a two—fold rather than a four—fold rotational symmetry element.
Pairs of atoms (dimers) are lined up in rows as shown schematically in
fig. 2.1. In general a physical surface is broken into domains, each of which

has one of the two possible orientations of dimer rows. Domain boundaries
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Figure 2.1: Schematic representation of the reconstructed Si(100) surface.
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separate regions having orthogonal dimer rows. These features are important
in the epitaxy of Si on Si(100). Mo et al (1989) have shown that at
temperatures between 300 and 300 K, the lateral accommodation of Si
adatoms is orders of magnitude greater at the ends of the dimer rows than at
the sides. Monatomic terrace steps which correspond to the ends of dimer
rows are good sinks for adatoms, while terrace steps which correspond to the
sides of dimer rows are poor sinks. The met result is that the shape of

deposited islands of Si is anisotropic.

B) ‘The Growth of Single Layers of Ge on Si(100)

The growth of pure Ge on Si(100) involves a 4% lattice mismatch,
and therefore two—dimensional growth places the germanium in a highly
strained state. As discussed in the previous section, equilibrium interfacial
thermodynamics indicates that there will be a temdency toward island
formation once the deposit becomes sufficiently thick. It has been found that
for pure Ge deposited on Si(100), a transition from two—dimensional growth to
island formation takes place when the film is 3—4 monolayers thick
(Mo et al. 1990; Williams et ol 1991).  Scanning  tunneling  microscopy
(Mo et el 1991) has shown that at submonolayer coverages, terrace steps
which correspond to the ends of dimer rows are good sinks for Ge adatoms,
while terrace steps which correspond to the sides of dimer rows are poor
sinks. Furthermore, the surface diffusion of Ge on Si(100) is 1,000 times faster
along substrate dimer rows than perpendicular to them. Scanming tunneling
microscopy has also shown that the tramsition from two—dimensional to island

growth at 775 K follows a kinetic pathway which involves the formation of a
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nonequilibrium "intermediate phase". Rather than immediately forming large
clusters of Ge atoms 250 A high bounded by {113} planes (the final
equilibrium state), deposited Ge first forms small clusters 20-50 A high and
1000 A long bounded by {105} planes. These are more easily nucleated at
this temperature and serve as a starting point for the formation of the large
clusters. However, growth at 850 K results in the formation of large clusters
only. Thus the details of the transition {rom two—dimensional to
three—dimensional growth are more complicated than those given by a simple

equilibrium treatment.

It is possible, through the use of surfactants, to modify the thickness
at which the onset of islanding takes place. Surfactants effectively modify the
parameter f,, which is a measure of the attraction between the n** layer of
deposited atoms and the substrate. LeGoues, Copel, and Tromp (1990) have
used the preliminary deposition of a monolayer of arsenic on the substrate
surface in order to increase f§, and therefore the thickness at which islanding
begins to occur. It was found that the tramsition to island growth took place
after the deposition of 10 monolayers of Ge rather than 3 monolayers in the

case of unmodified surfaces.
C) The Growth of Si-Ge Superlattices on 5i(100)

Short period superlattices having a structure (Si,Ge,),, where m and
n denote the number of monolayers of silicon and germanium in a single
period of the superlattice and p denotes the number of periods have been

grown by molecular beam epitaxy on Si(100) and studied by
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Baribeau et al (1991). Their structural properties were examined by Raman
scattering spectroscopy, glancing incidence X-ray reflection, Rutherford
backscattering, and extended X-ray absorption fine structure analysis. It was
found the Ge, films with n ¢ 5 were two—dimensional in nature and showed
no sign of strain relaxation. However, some interfacial mixing of 5i and Ge
atoms was present in these films. The character of superlatiices with thicker
Ge layers was markedly different — Ge clustering and strain relaxation were
observed when n = 12. In general the results appear to indicate that Ge
layer thicknesses may be greater in superlattices than in single Ge layers

before there is a transition to three—dimensional growth.

2.2. Dislocations in Strained ILayers

2.2.1. Energetics

A) Epilayer Self Energy

If a block of material M unit cells long having a lattice parameter a,
and height h is biaxially strained and joined to a second block of material M
units cells long having a lattice parameter a, and height Nh as in fig. 2.2,
the resulting composite system is in a state of self-stress. A partition of
strain between the two blocks will take place in such a way that the elastic
energy of the system is minimized. If any buckling of the two blocks is

ignored (buckling is negligible when N>>1), then except for regions close to



Figure 2.2: Internally stressed system formed by joining {wo materials
having different lattice parameters.
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the edges, each block is in a state of biaxdal strain. For biaxdal strain,

Hooke’s law gives

= —é—(a’ - vo), (2.2.1)

where e is the magnitude of the biaxal strain, ¢ is the magnitude of the
biaxial stress, E is Young’s modulus, and v is Poisson’s ratio. Since

E = 241 + v), where p is the shear modulus,

¢ = _%gj—‘;;e— : (2.2.2)

The relative displacement of the two blocks is u = M(a, — a,); the total
integrated strain in the system must be equal to this displacement. The

magnitude of the strain in the material having the lattice parameter a, is

ay —a, ay =4,
. Therefore the elastic energy per unit

given by € =

ne

a, =N

area of the system is

2 2
2u(1 f-¢h 2u(1 4+ v)e Nh
E, = i +(:)-(- V) ) + p((l - 3:) ’ (2:23)
31 — 3 .
where f = ~———— . Equating the partial derivative of Ey with respect to e
0

with zero gives a minimum in the energy at

£ = W . (2.24)
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In the limit N = o, ¢ = 0, and all of the strain is confined to a finite layer

sitting on a semi-infinite base.

It is essentially this condition which describes strained epitaxial layers
deposited on a substrate of much greater thickness. Except for a small relaxed
region near the edge of the sample, the epitaxial layer is in a state of biaxial
strain, while the substrate is strain—free. The strained layer has an energy per

unit area of

3
2u(1 + v)fh
Eqp; = r‘(ﬁl + u} : (2.2.5)
Beuk — Bapj
where h is the height of the epilayer and { = SUba .em , with a,; and
epi

a,p, being the lattice parameters of the epilayer and substrate respectively.

Silicon-germanium alloys form a continuous solid solution, and obey
Vegard’s law (Dismukes, Ekstrom, and Paff 1964). If they are deposited on a
silicon substrate, they are placed in a state of biaxial compression. The lattice
parameter of silicon at 25°C is ag; = 5.4309 A, while that of germanium is
3ge = 5.6577 A at 25°C (Pearson 1967). Then f(x) = 0.040x, where x is the
fraction of Ge in the alloy. Taking p = 68.1 GPa and v = 0.218 for Si
(Hirth and Lothe 1982) gives

Eep; = (3.39x10)xh, (2.2.6)

where h is in meters and Eg; is in J/m?
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B) Dislocation Self Energy

A common approximation {Houghton et al. 1990) used to represent

the energy of a dislocation in a half-space is

Ugiat = b‘(;,l,-(f Tﬂ? E: In( “{j )

(2.2.7)

where Uy, is the emergy per unit length of the dislocation, § is the angle
that the Burgers vector makes with the dislocation, h is the distance from the
dislocation to the free surface, and « is the core parameter of the dislocation.
The energy is taken to arise from a strained cylinder of radius h centered
about the dislocation core. In work relating to Si—Ge strained layer structures,

a is often taken to be equal to 4 (Houghton et ol 1990).

An exact expression for the emergy of a dislocation near a free surface

has recently been obtained (Freund 1990). In the notation used in this thesis,

Uil = ﬁ{b__y)"{(l - ucosgﬁ)ln( 31; )
— sin’A(Jeos(x — 2¢) + 71(-1‘__2%)-)], (2.2.8)

where ¢ is the angle between the slip plane of the dislocation and the free
surface. The work done by the tractions on the surface of the core as the

,u,b gin ﬁ(l 2u)
161r(1-u)

terms are due to the work done by the tractions on the sides of a vertical

dislocation is formed is accounted for by the term ; the other
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cut used to form the dislocation. In this analysis the core radius is assumed
to be vanishingly small, and contributions to the dislocation energy from the

non-linear elastic material which forms the core are ignored.

The core structures and energies of various types of disloca:tions in Si,
Ge, and diamond have been evaluated (Nandedkar and Narayan 1990) using
various interatomic potentials. In the case of Si, the core energy of a 60°
dislocation with a Burgers vector of the type %(110) as calculated using the
Stillinger-Weber potential is 0.95 eV A-! while a 90° dislocation having the
same type of Burgers vector has a core energy of 0.49 eV A-' In both cases
the core cut—off radius was determined to be approximately 3 A. The
difference between the iwo energies is primarily due to the fact that the 60°
dislocation has a dangling bond in its core structure, while the core of the
90° dislocation is free of dangling bonds. These core energies and cut—off radii
may be used in conjunction with equation (2.2.8) in order to arrive at the
self energy of a dislocation in a half-space (neglecting the energy of any
surface step associated with the dislocation). It is then possible to determine
the value of the core parameter o by writing the expression for the energy of
a dislocation near a free surface in the form of equation (2.2.7). This value
has been the subject of some debate, with estimates for a 60° %(110)
dislocation ranging from 0.6 (Perovic and Houghton 1992) to 2.0
(Hull and Bean 1989) to 4.0 (Houghton et al. 1990). In this thesis, the value
of the core parameter is determined using an expression for the self energy of
a dislocation in a half-space which ignores the work dome by the core
tractions as the dislocation is formed. The result is compared with that

obtained when core tractions are taken into account.
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C) The Critical Thickness and Dislocation Energetics

Once a strained epitaxial layer becomes sufficiently thick, there is a
tendency for the relief of biaxial strain to occur via the introduction of misfit
dislocations to the substrate/epilayer interface. The thickness at which it
becomes energetically favourable for this to happen is known as the critical
thickness; when the epilayer is less than this thickness it resisis the
introduction of misfit dislocations. A number of theories of the critical
thickness and the energetics of dislocation arrays in strained layers have been

put forward; these are reviewed in what follows.

i) The Theory of Matthews and Blakeslee

Matthews and Blakeslee (1974) developed an expression for the critical
thickness by analyzing the behaviour of a single dislocation in a strained
epilayer. Their argument runs as follows: the force due to the internal stress

in an unrelaxed epilayer on a dislocation running from the substrate/epilayer

h
sing

the biaxial stress (this is equivalent to the sum of a uniaxial stress and a

interface to the free surface is ocospcosA , where ¢ is the magnitude of

hydrostatic stress), ¢ is the angle between the slip plane normal and the
normal to the free surface, and ) is the angle between the Burgers vector of
the dislocation and the normal to the free surface. This force is opposed by
the line tension of the dislocation. The net force acting on the dislocation is

given by
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_ h _ _ocospecsAbh
F = Tyb sing sing

1

- W’fb_—ur(l - veos'f)ln(-2), (2.2.9)

50 that the effective resolved shear stress acting on the dislocation is

_2u{1 + v)fcosecosA
Tt‘.ff - (1 - y)

bsi 2 ah
- Tﬁrﬂ)—(w 21 - wveos f)ln(—5-). (2.2.10)
The critical thickness h, correspouds to Toff = 0:

— bsing (1 2 oh
B = g1 + v)IcosypcosA (1 — veos f)ln(=5%)- (2.2.11)

ii) Matthews’ Energy Balance

An energy balance on the epilayer as a whole has been used by
Matthews (1975) as an alternate means of deriving the critical thickness. If an
orthogonal grid of dislocations is introduced at the substrate/epilayer interface,

the total elastic energy of the system per unit area in approximately given by

2 2 2
241 + v)eh pb (1 — vcos f) oh

where ¢ is the value of the net biaxial strain in the epilayer. The

contribution to this energy from the dislocations in the epilayer has not been
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well  understood.  Matthews (1975) described the  dislocations  as
"noninteracting", implying that only the sell enmergy of the dislocations is
included in the total emergy. This is incorrect; a term which represents a
portion of the dislocation—dislocation interaction energy is included in the
above equation. It will be shown later that if the cdislocations are truly
noninteracting, then when h is greater than the critical thickness, an infinite
number of dislocations can be introduced to the epilayer while lowering the

total energy of the system. Now since

e = f - bsinfosp (2.2.13)

’ 1 2
B= M& i 536 -t #b'-gff_-'(z E)Ss‘l-nggg:wﬁ) tn( ail; ) (22.14)

For a given thickness h, a minimum in the elastic energy of the system as a
™
function of ¢ i¢ obtained by setting 4= = 0. The value of ¢ at which the

energy of the system is minimized is

b(l — vcoszﬁ) In

()
8xh{1 + v)sinScosy ~ )

€= b

(2.2.15)

As the spacing of the dislocations becomes infinite (the condition for the

critical thickness), ¢ ~ {, and

2
— _ b(l — vcos f) ch
b, = 8xI(I + v)sinfcosyp in(=9). (2.2.16)
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The preceding analysis applies to the case of a homogeneous uncapped
epilayer. Houghton et al. (1980) have extended the treatment to include
superlattices and capped epilayers. The result for the critical thickness takes
the same form as above, but f is replaced by favg, where fm,g is the average

misfit of the epilayer.
iii) Analysis of Dislocation Interactions

Willis et al. (1990) have developed a method for determining the
elastic energy of a periodic array of misfit dislocations in a strained epitaxial
layer with dislocation—dislocation interactions fully accounted for. The
one—dimensional array made up of mixed dislocations shown in fig. 2.3 served
as the basis of their analysis. An orthogonal grid of dislocations generated by
these arrays lying at right angles to each other was taken to represent the
relief of biaxial misfit in real systems. In those cases in which the geometry
of the system required that the mixed dislocations include a screw component,
the two arrays were aligned such that the screw components formed a twisl
boundary. This is an important point; as will be discussed later such an array
is unlikely to be found in practice, and other arrays serve as better
descriptions of the dislocations which are actually introduced in relief of

biaxial strain in epitaxial layess.

The method used by Willis et al. (1990) splits the strain field of the
array of orthogonal dislocations into two components: a uniform field

corresponding to the average strain of the array and a field fluctuating about
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Figure 2.3:

One-dimensional array of mixed dislocations having a similar
orientation lying parallel to the free surface in a semi-infinite
solid.



e}
(%1

an average value of zero representing the pericdically varying strain of the
array. Neither the screw components (which form a twist boundary) nor the
edge components with their Burgers vectors perpendicular to the free surface
(which form a dislocation wall) have long-range stress fields and they
therefore do not contribute to the average strain of the array — the only
component which does so i3 that which relieves strain in the epilayer. All
three components, however, have an associated fluctuating strain field. The
energy of this field was determined using Fourier series and added to the

energy of the uniform field in order to arrive at the total elastic encrgy of

the dislocation array.

A major result (Jain et ol 1992) of the full treatment of the enecrgy
of the dislocation array under discussion is that the critical thickness for
Si(100) takes on a value which is different from those previously determined
(e.g. Matthews 1975). At the critical thickness, a finite number of dislocations
are present in the epilayer, that is, the nature of the dislocation~dislocation
interactions is such that the emergy of the system is minimized at a finite
dislocation spacing. This new value is referred to by Jain el al. as the
"correct" critical thickness, although, as has been mentioned, this array is
most unlikely to be found in practice. Localized forces acting on dislocatinns
in the array shown in fig 2.3 were also determined; these too will vary in

different types of arrays relieving misfit in an epilayer.

More recently an alternative method for evaluating dislocation

interactions in arrays near a free surface based on the summation of
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dislocation—pair interactions has been adopted by Atkinson and Jain (1992)
(for arrays of edge dislocations) and by Jain et al (1993) (for arrays of
dislocations having a non-uniform spacing). A similar approach has been
carried out independently in this thesis and applied to both the array of
dislocations considered by Willis et ol (1990) and to an array of dislocations
in which components not relieving misfit strain alternate in sign along the

length of the array.
2.2.2. The Nucleation of Dislocations in Si, ,Ge_/Si Strained Layer Structures
A) Perfect Dislocations

If an Si,.,Ge,/Si strained layer structure is grown above its critical
thickness, it becomes energetically favourable to introduce misfit dislocations
to the substrate/epilayer interface. Among the possible sources for dislocations

ale

1) The homogeneous nucleation of half-loops (either whole or partial) at the

free surface of the epilayer.

2) The homogeneous nucleation of half-loops at the substrate/epilayer

interface.

3) The heterogeneous nucleation of complete loops at a growth defect in the

bulk of the epilayer.



4) The extension of threading dislocations introduced during growth.

5) The nucleation of halfJoops at defects at the edges of the sample or at
the free surface.

6) The multiplication of dislocations by cross—slip or through sources such as
the Hagen-Strunk source (Hagen and Strunk 1878) or the diamond defect
(Eaglesham et al 1989).

Other dislocations sources such as the nucleation of dislocations at the edge of
islands on the free surface (Matthews 1966) or nucleation at the base of

cracks in the epilayer (Matthews 1971) are also possible.

The homogeneous nucleation of a dislocation half-loop at the free
surface is energetically more favourable than the homogeneous nucleation of a
complete loop at the substrate/epilayer interface (Hirth and Lothe 1982). The
energy of formation of a perfect half-loop on a plane inclined at an angle ¢
with respect to the growth surface is the sum of the elastic energy of the
loop and the surface emergy of the step associated with the loop, minus a
term arising from the strain in the epilayer relieved by the presence of the

loop. The elastic energy of the half-loop is approximately (Marée et al. 1987)

1 2

AT pb b ar
Bloop = —3{ IE41'71- + 41:(‘11 - V) Jin(—5-)

u.b r (4('1' vf2) | n{ a; Y, (2.2.17)
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while the surface energy of the associated step is (Marée et ol 1987)

E,., = 2rbsinfy,, (2.2.18)

step

where 7, is the surface emergy per unit area. The elastic energy in the

epilayer released by the half-loop is

2
E,y = —W-E—bacosAcosqa. (2.2.19)

As 1 increases from zero, the half-loop emergy increases for small r, reaches a
maximum value of E, when —%b;‘— = 0, and then decreases as r increases. The

energy is at a maximum of

By = rc[ “bsg - "/ 2) (11 + 1n(°“'=))] (2.2.20)

(Marée et al. 1987) at a radius of

I = wbaco:.;\cosw [ ub4& — u/2) (1 + ln(%g))] (2.2.21)

Assuming that activated complexes are in equilibdium with the defect-free

-E
state, the nucleation rate is given by N = fCoexp(—E.;.—) nuclei m=3s!, where

f is a complex function depending of the vibration frequency of atoms in the
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lattice, the activation enmergy for diffusion, and the length of the critical
nucleus. Note that since Ey;. varies as bs, there is a strong tendency for the
loop to decompose into two partials bounding a stacking fault. If a partial
dislocation with an associated stacking fault having energy 7, is nucleated,

the critical radius becomes

1 b3(1 — v/2 . .
Te = ~7{bocosACOSY — 7gf) [ a 4{1 - % ) (L + ln(g{r))], (2.2.22)

2
because of the extra term B, = —"'-rf—'ysf which is added to the half-loop

energy.

The expressions for the elastic energy of the half-loop may vary - it
is possible, for instance, to use the formula of Bacon and Crocker (1965) or
Nabarro’s formula (Nabarro 1967), but in any case activation energy
calculations indicate that homogeneous nucleation of hali-loops is unlikely at
misfits of less than 2% if the standard core parameter o = 4 for diamond
cubic structures is used. Hull and Bean (1989) have argued that the atomic
scale motion of Ge and/or Si atoms should lower the core energy energy So
that a value of @ = 2 is more appropriate. In addition, the potential
clustering of Ge atoms (Hull and Bean 1989) could lower the activation
energy barrer by creating localized stresses favourable for nucleation near the

free surface. Their calculations predict that homogeneous nucleation is
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unfeasible only when the germanium concentration in the epilayer is less than

approximately 20%, which corresponds to a misfit strain of 0.8%.

Since the homogeneous nucleation of dislocations requires large
activation energies, it is to be expected that most misfit dislocations which
are generated in silicon-germanium strained Jayer structures arise Irom
heterogeneous sources. A number of heterogeneous sources have been identified.
It has been shown (Perovic et al. 1990) that local stress concentrations at
surface irregularities can nucleate dislocations. A regenerative source consisting
of a prismatic loop with Burgers vector %(114) surrounding an intrinsic fault
on a {111} plane and known as the diamond defect has been observed in a
series of Si-Ge alloys grown on Si(100) (Eaglesham et ol 1989). However, this
source has not been commonly observed. A more frequently reported
heterogeneous source is a particulate imperfection in the deposit. An example
of this is the preferential nucleation of dislocations at SiC particles
(Perovic et al. 1989); this, however, usually takes place during the growth of
the strained layer. The extension during annealing of threading dislocations
having their origin in the substrate has been observed in systems based on
GaAs {Matthews and Blakeslee 1974), but the quality of Si substrates now
available is such that they are virtually dislocation—free, and so this source of

misfit dislocations is not observed in Si~Ge epitaxy.
B) Partial Dislocations and Sequences of Partials

The relief of strain via the nucleation of partial dislocations in
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strained epitaxial layers requires a careful consideration of the geometry of the
system. An examination of the stacking of {111} planes in a diamond cubic

structure with a [100] growth direction reveals that an epilayer in tension

{(e.g. Si on Ge) may be relieved by a 90° %(211) dislocation. An epilayer in
compression (e.g. Ge on Si) cannot be relieved in this way - such
a displacement leads to the formation of a high-energy fault

(Marée ef al. 1987). I a partial of the type %(211) relieves an epilayer

in compression, it must have g = 30°.

As has been seen, theory predicts that when a perfect dislocation loop
is nucleated at a free surface, it is energetically favourable for one of the
partials -of which it is composed to be nucleated separately. When the epilayer
is in compression, the 30° partial must be nucleated first; this is followed by
a 90° partial which tends to be driven toward the first (Marée et al. 1987).
In this case the two partials are bound together. However, the first partial
nucleated in an epilayer under biaxal tension has § = 80°. It may well
expand on its own, for the energy of a single 90° partial half-loop is lower
than that of a complete extended one (Marée et el 1987). These
considerations lead to the expectation that partial dislocations are more likely
to be observed in epilayers under biaxial tension than under biaxial
compression. This is in fact what has been observed — relaxation by 90°
degree partials and microtwins arising from the successive glide of 90°
dislocations on adjacent {111} planes have been observed in tensile Si-Ge
strained layer structures (Wegscheider et al. 1990), while relaxation in

compressive Si-Ge strained layer structures has been observed to occur
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through 60° %(110) dislocations, or, at larger misfits, 90" Lomer dislocations
(Kvam et ol 1987). There has been one report of stacking faults and partial
dislocations found in a layer of Ge grown on Si(100) (LeGoues, Copel and
Tromp 1990), but these formed only in relief of highly localized stresses in

the vicinity of growth defects.
2.2.3. Propagation and Multiplication of Dislocations
A) Dislocation Velocity

A knowledge of the velocity of dislocations is important in predicting
the relaxation rates of strained layer structures during annealing treatments.
The velocity of dislocations driven by the internal stress field of Si-Ge
strained layers is similar to that observed in pure Si under external driving
forces. In the latter case (Alexander 1986), it has been found that the

velocity for the thermally activated glide of dislocations at low strains follows
m
V = Vo) e, (2.2.23)

where V is the dislocation velocity, V, is a material constant,
T, = 1 kg/mm? m is an empirical constant with 1< m <2, Q is the
activation energy, k is Boltzmann’s constant, and T is the temperature in
degrees Kelvin. The form of the above equation may be explained using the

Hirth and Lothe double kink theory (Hirth and Lothe 1982). In the case of
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dislocation propagation in Si-Ge strained layers, Houghton (1990) has shown

that in a low misfit dislocation regime

V= Vy Te;’ ) “exp(—pi-), (2.2.24)
where V, is a2 material constant and 7.y is given by the difference between
the driving force on the threading arm of the dislocation due to the biaxial
strain in the epilayer and the resistance to propagation offered by the line
tension of the misfit dislocation lain down as the threading arm propagates.
The value of the stress exponent m was found to be 2.0 = 0.1, while that of

Q was found to be 2.25 = 0.05 eV for 60° %(110) dislocations.
B) Multiplication

In addition to depending on the rate of dislocation nucleation and
propagation, the relaxation kinetics of strained epitaxial layers is dependent on
the extent to which dislocation multiplication takes place. A mechanism for
the multiplication of dislocations was proposed by Hagen and Strunk (1978) in
which orthogonal 60° dislocations react to form two threading segments
generating fresh misfit dislocations. However, this mechanism is not generally
accepted and it is now believed that cross—slip (Tuppen et al. 1990;
Capano 1992) serves as the predominant mechanism through which
dislocations can multiply. Capano (1992) has suggested that there is a

minimum layer thickness which is necessary to accommodate the cross—slip
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process required for dislocation multiplication. Once this thickness is exceeded,

the rate of epilayer relaxation may be significantly enhanced.
C) Relaxation Kinetics

A knowledge of the rates of dislocation nucleation, propagation, and
multiplication permits, in principle, the overall rate of strain relaxation in an
epilayer to be determined. Although a number of efforts have been made to
develop a unified law for the rate of epilayer relaxation, none have proven to
be entirely satisfactory. Dodson and Tsao (1987) assumed that the rate of

increase of misfit dislocations was given by

d
- = VK7, (2.2.25)

where p is the number of misfit dislocations, V is the dislocation velocity, 7
is the effective stress acting on the dislocations, and K is an empirical
constant. The integration of equation (2.2.25) gives an expression for strain

relaxation as a function of time. Nix et el (1990) took

%EL = pVK, (2.2.26)

where K is again an empirical constant. Neither of the above approaches took
into account the effect of dislocation—dislocation interactions. Jain et al. (1992)
considered modifications of these approaches with dislocation interactions
included, but were unable to obtain a model which matched all available

experimental data. A different approach to the problem of relaxation kinetics



has been taken by Houghton (1991). Taking only dislocation nucleation and
propagation into account, he derived an expression for relaxation kinetics in
an epilayer which applies only to the initial stages of strain relaxation. The
rate of relaxation was found to be very semsitive to the value of effective

stress active in the epilayer.

2.3. Electron Microscopy

The theory of electron diffraction and imaging as applied to the
transmission electron microscopy of crystalline defects, largely developed in the
late 1950°s and early 1960’s, is now well established (Hirsch et al. 1977).
What follows is a brief review of those parts of the theory which are relevant

to the TEM work performed in this thesis.

A) Kinematical Diffraction

Many of the effects found in electron diffraction patterns can be
explained in terms of the kinematical theory of diffraction, which considers
only single electron scattering events. Some of the basic results of this theory
follow. In an infinite crystal the difference between the incident and diffracted
wavevectors must be equal to a reciprocal lattice vector (Cowley 1984). This
condition may be represented geometrically by the Ewald sphere construction
(Cowley 1984). For a given crystal orientation relative to the incident electron
beam a distinct diffraction pattern is produced. In the case of diffraction from

thin crystals a broader distribution of diffracted intensity in space is allowed;
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in general this distribution is given by the Fourier transform of the crystal
shape (Hirsch et al. 1977). When a crystal contains small regions of a second
phase, the broadening of diffraction spots giving rise to streaking effects is

common.

If a thin crystal is heavily twinned, both matrix reflections and extira
spots corresponding to the presence of twins appear at certain crystal
orientations. The relationship between the matrix and twin reflections has
been described by Hirsch et al. (1977). They give expressions which may be
used to index twin reflections in terms of matrix indices and to obtain
twinning zone axes lying parallel to the matrix zome axis. Twinning reflections
appearing in the same diffraction pattern as matrix reflections do mnot
necessarily lie in the zero order Laue zone, occupying instead a layer of
reciprocal space very close to that zone. For twins which are very thin and
form platelets embedded in the matrix, the diffracted intensity distribution
associated with a twinning reflection takes the form of a rod lying normal to
the broad face of the platelet. When many of these twins are present in a
crystal, the electron diffraction patterns are marked by twinning reflections

which are extended into streaks.

B) The Two-Beam Dynamical Theory of Imaging

It has been found that the theory of electron imaging based on single

scattering events (kinematical theory) is valid only under special conditions. In

general it is necessary to consider multiple scattering events in a theory of
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imaging in order to account for many of the features found in electron
images. Theories which take into account multiple scattering events are known
as dynamical theories. The simplest of these is the two-beam theory, which
provides an adequate framework for many electron microscopy investigations of

crystalline defects.

The two—beam theory may be formulated in terms of either wave
optics or wave mechanics (Hirsch et al. 1977). An important finding of the
thecry is that the wavefunction inside the crystal is described by two Bloch
waves, one of which is much more strongly scattered than the other. This
strong scattering of ome of the Bloch waves is known as anomalous
absorption, and is responsible for some of the important contrast effects found

in images of defects such as dislocations and stacking faults.

The equations describing the incident and diffracted amplitudes at a
point in the x-y plane (z is parallel to the electron beam) in the

wave-optical formulation of the two-beam theory are (Hirsch et ol 1977)

i, o
T 2.6 ¢ + W("ég_ - T’g"‘)‘ﬁg

d¢ . | ,
T = o - + -+ 2+ By (22)

where ¢, and ¢, are the amplitudes of the incident and diifracted beams
respectively, .’;‘g is the extinction distance associated with the diffracted beam,

£y and .';‘é are terms which account for anomalous absorption, s measures the
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deviation from the Bragg angle, and f; = g-%u:'— ,where g is the reciprocal
lattice vector used to form the image and R is the displacement field of the
crystalline cefect. These expressions (known as the Howie-Whelan equations)
make use of the "column approximation" in which the diffraction events in a
small column of material parallel to the z—axis are taken to be independent of
the events in adjacent columns. The conditions under which the column

approximation is valid have been examined by Howie and Basinski (1968).

An important application of the two—beam theory is to the study of
dislocations. A simulated image may be obtained by inserting the
displacement field of the dislocation in an infinite elastic medium
into the howie-Whelan equations and integrating numerically
(Howie and Whelan 1962). When the dislocation is very close to a free
surface, the displacement field must be modified in order to satisfy the
zero—traction condition at the surface (Head 1953). If the dislocation is in an
isotropic elastic medium, then there are conditions under which it is invisible
if it is purely edge or screw in character. Mixed dislocations, however, are

always visible in the two-beam case.

Another application of the theory is to the analysis of the conirast
generated by small coherent misfitting particles of a second phase. By using
the displacement field of a coherent misfitting particle in the numerical
integration of the Howie-Whelan equations, Ashby and Brown (1963) have
shown that when a small coherent particle is less than half an extinction

distance from the foil surface a strong asymmetrical image results. When the
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region near the particle is imaged at the Bragg condition using the diffracted
beam, a black/white asymmetry is present, the sense of which depends on
whether the misfit is of the "vacancy" or "interstitial" type and on the
direction of g. In the case of "interstitial" misfit, the contrast of a dark field

image on a positive print is such that g points from white to black. This

result is reversed for misfit of the "vacancy" type.



CHAPTER 3
Dislocation Energetics in a Hali-Space
3.1 The Energetics of Dislocation Arrays in Strained Epitaxial Layers

3.1.1. General Method

Two one—dimensional arrays of dislocations of spacing d at the
interface between a substrate and a strained epilayer of thickness h are
examined. Together the substrate and epilayer make up a semi—infinite,
elastically isotropic medium having a single set of elastic constants 4 and » in
which the epilayer is subjected to a uniform mismatch strain e?‘_’i = 1,

ij
where

sub ~ %epi

f= 0 P (3.1.1)

epi

and ay,, and a,, are the lattice parameters of the (cubic) substrate and

pi
epilayer respectively.

The following arrays are considered:

(i) An array of mixed dislocations characterized by two angles § and

40



41

w, where i is the angle between the Burgers vector of the dislocation and the
dislocation line, and ¢ is the angle that the slip plane makes with the free

surface. All dislocations have an identical orientation.

(ii) An array of mixed dislocations characterized by f§ and ¢ in which
those components of the Burgers vector not relieving misfit strain alternate in
sign along the length of the array. These two types of array together with

the coordinate system used to describe their elastic fields are illustrated in

fig. 3.1

The total elastic energy per unit area of the system as a whole is

evaluated for both arrays. This energy is given by
Etotal = Eepi + Edisl

+ Eintdist/epi + Eintydisl/disl, (3.1.2)

2
where Eepi = 2 lith is the emergy per unit area of the epilayer, Egis is

the energy per unit area of the dislocation array, neglecting interactions
between dislocations, Eint,disi/epi 15 the interaction energy pet unit area
between the dislocation array and the epilayer, and Einudisi/dist is the
interaction energy per umit area between the dislocations which make up the
array. Bach of the components of the total energy is examined separately.
The equilibrium dislocation spacing at a given lattice mismatch and epilayer

thickness is obtained by determining that value of d which minimizes the
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(a) |b AN

——d —

Figure 3.1: One-dimensional arrays of mixed dislocations having (a) similar
and (b) alternating orientations lying parallel to the free surface
in a semi-infinite solid.
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total enmergy of the system. Surface steps associated with an edge dislocation
lying on a slip plane which is not parallel to the free surface are ignored.
Such steps have a surface energy as well as their own elastic fields, but these
terms do not make an appreciable contribution to the total energy of the
system, and their omission does not alter any of the basic results obtained in

the analysis.

Corresponding two—dimensional arrays of dislocations are also studied.
Each array is an orthogonal grid of dislocations, so that an additional term
representing the interaction between the two orthogonal sets of dislocations

must be included in the expression for the total energy per unit area, giving
Etotnl = Eepi + EBais) + Eintgdisl/epi
+ Eintydist/aist + Binvaisi/dist, (8.1.3)

where E'in;,dm/disl is the interaction energy per unit area between the
orthogonal dislocations.  The equilibrium spacing of the two—dimensional

arrays is then given by minimizing the total energy of the system.
3.1.2. Dislocation Self Energy

The energy of a dislocation a distance h from a free surface may be
calculated through the appropriate integrations of stresses in a manner similar

to the case of a dislocation in an infinite crystal. An edge dislocation having
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a Burgers vector b parallel to the free surface and of a sign which would

relieve an epilayer in tension has the following stress field (Head 1953):

b [@-h)mxl—h)’-@ (k)  (xy+h) x3)

ai 27(1—11) ((xl_h)9+x§)2 ((x1+h) +x2)
4 op Brirh)(xiB)’ - 6x.(x+ 1h)xs — x‘;]
((x|+h) +Xo)
" [(x.—h)((xl-h) +963) _ (euth) (Geybh)'36)
27(1-v) ((x1-h) +x§) T (xcth) +x2)

_ gy Goorh)(eeh)® = 6x (xeerh) + 3
((X|+h) +XQ)

_ b [xof(xeh) oxp) _ xal(x k) Bx)
5“51‘”)[ (Gerh) Hxz). ((euth) 4x3)”

2
+ 41].)([ (x l+h) '-'2}{%

314
((x1+h) +x2) ( )

If an edge dislocation has a Burgers vector b perpendicular to the free

surface, then its stress field is (Head 1953):

oy = [ xg(3(x.-h) +le xQ(3(xl+h)2+x§)
A ((x1-h) +Xz) ((x1+h) “4x32)

3((x1+h) “x3)
((x1+h) 2+x§)3

+ 4hxx»
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T2 = 3 yb {"((xi*h) ‘L?’l “*((‘41+h) —tn)
2x{1-} ((x:h) +x§)1 (1) -Hn))

4 dhe 2 +h)” + (Brt2h)cs
((x1+h) +‘cq)

" {(xl-h)((xl—h)n—xq) (xrth)( (xprh) xz)
P () )T ((xebh) +xa)

4
+oh (h'—XI)(x1+h) + ﬁxl(xl+h)x? - xz] (3.1.5)

((xe+h) +x2)°

The stress field of a screw dislocation near a free surface is given by a simple

image construction (Hirth and Lothe 1982):

= b X2 _ X2
3 = < 9y T3 T 3
2

(x;=h) +x2  (xr+h) +x

0‘23=g%[ Ay -y 2]- (3.1.6)
2

(x;—h) +x2 (x1+h) +x

The energy per unit length (ignoring the work done by tractions on the core
surface as the dislocation is formed) of the three dislocations can then be
detern’ned by the appropriate integration. For an edge dislocation with b

parallel to the free surface

9 o m
Udisl1 = b_ l"dxz + g’x_z;_iggdx 48h x2 — 4h Xde2 + Ucore
il v X2
T r x'z+4h )
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2

= ﬁffl{—_ﬂ[[ln(xg)]: - [v}ln(xg -+~4h2)]l:'O

-6h° 16h" ]“’
+ %

+ [ ' + Ucore
(xp+4h)  (xo+dh

s 2 2
h 6h
4'1T(1-V)[ r g (Ig+4hi)

16h°

- 13 + chrg, h)l'o. (3.1.7)
(1’0+4h )

When ry<<h,

2

Udis1 = Ef(‘—?—)—{ln( =)+ 3

+ Ucore. (3.18)

Further details concerning the above integration may be found in the

appendix. For an edge dislocation with b perpendicular to the free surface,

7 o
Ugist = ﬁ%ll).,—u)' [ J x1| j 1 + J M:J%)'dxl] + Ucore
I

I,+h ro+h °+h(x‘+h)

- ot - [iesen]”

+ [ "h, + B ]m + Ucore
(x1+h) (x1+h) Iyt+h



o b fpnet?hy  roh
4dx{1-v) g (ro+2h)2
- h ] + Ucore, h>1'0.
(r,+2h)

When ry<<h,

2

Ugist = ﬁ%bm)'[ln(?_l;') = %] + Ucore-

For a screw dislocation in a half-space,

1 m
Ugisl = gj:_r ﬁ %dxz - -[;f::i?dle 4 Ucore
o 0

1
= E:— ln(g—l}) -+ Ucore, h>r0.

a7

(3.1.9)

(3.1.10)

(3.1.11)

In these expressions, Ucore is the energy per unit length of the dislocation core

and ry is the core radius.

A dislocation having edge components bsinfcosy parallel to the free

surface and bsinfsing perpendicular to the free surface as well as a screw

component bcosf has an energy given by the sum of the energies of its

component dislocations and the interactions between them. It is obvious from

the sense of the displacements that the screw componment does not interact
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with either edge component. The interaction between the edge comporents is
most easily calculated by forming the dislocation of Burgers vector bsinfsing
in the presence of the dislocation having its Burgers vector parallel to the
free surface. Since there is no shear stress at xp = 0 opposing the formation
of the dislocation with Burgers vector bsinfsing, there is no interaction

between the two dislocations, and the energy of the mixed dislocation is

2 2
oo = L) 1 (2

2.1
i 1 , 2
+ b 8111’ €08 ¢ = $in ) + Ucore, B>To. (3.1.12)
This result is similar to that obtained by Freund (1990), but in the present
case the work done by the tractions on the surface of the dislocation core as
the dislocation is formed are ignored, and unlike Freund’s treatment (1980),
the energy of the non-linear elastic material which makes up the core is

included. If the latter term is not taken into account, then the dislocation

energy per unit length in the present treatment is greater than that of the

b'sin f(1-2
work of Freund (1990) and Jain et al (1932) by the amount £ “:_(ﬁ( -)-au)_
16m(1-v

Equation (3.1.12) may be written in the form

b(1 cos’ ah
o = D B g (&), b, (3.1.13)

provided that
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@ = 22 exp b’sin f(3cos’ L 3sin w)+4ﬂ(1~U)Umn1 (3.1.14)
To pb (l—ucos ﬁ)

4

If the work done by surface tractions on the core of the dislocation is

included in the expression for the self energy of the dislocation, then

1-2v
o= 2 erp [ub sin ﬁ[g(cos psin o) - 1(1—'/5] +4m(1—4)Veors| (3.1.15)
To ub (1 Veos ﬁ)

Dividing equation (3.1.12) by d gives the emergy per unit area of an
array of dislocations of spacing d in which interactions between dislocations

are neglected. Thus

Egis1 = 3[%@ 111( )

2 2
i 2 .2
+ & 1y (feos'y — sin ‘P)+Ucore], h>r1o. (3.1.16)

3.1.3. Interaction Between Dislocation and Epilayer — The Critical Thickness

A system made up of a single dislocation at the interface between a
substrate and a strained epitaxial layer has an elastic energy given by the
sum of the self emergy of the epilayer, the self emergy of the dislocation, and
the interaction energy between the dislocation and the epilayer. For a
dislocation lying parallel to the x; axis at the base of a homogeneous

uncapped epilayer, the interaction energy per unit length of dislocation is
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h +®
epi disl
Uintsdisl/epi = l I gap €27 dxadxy, (3.1.17)

=

i X disl ,
where o9p is taken from the self stress temsor of the epilayer and e2;S is

obtained from the strain tensor of the dislocation. Now
disl 2, disl 2, disl
ez = mﬁ;‘j{(l—l’ Yo = (v+v)au ], (3.1.18)

. epi . . .
and since oj; i§ a constant, we have, using the stress fields described

previously,
oo bsingeos b (xh){(x h)2+3x2)
Uinedistfepi = 222 Beosp JJ [ . i 2
int,disl/ epi = ) ((xl-h)2+xg)2
_ (xeth)( (x1+h32+§x:) (xl—h)(x1+h) — le(xl+h)x2 + xz] dxzdx,
((x1+h) +x2 ) ((xe#h) +x2)

_ aggiubsinﬁcosgo T J'm [(xl-h)((xl—h)z-xg) (xl+h)((x1+h) —xz)
d(1-v) ((xrh) +x3)° ((xi+h) “+x2)’

o on (Gxrth)(eth) - 6x1(xl+h)x2 - xg] gl
((x1+h) +x2)

+ _Uggib;ingsing T r,[xz((xn-lg) 2;X§J _xof(x 1+1;) :;xg)

d ol ((xr-h) +x2) ((xrth) “+x3)
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dxqdx,

b

2
((XH"h) +x

(3x+2h)x;
)3

2
]
-

epi Lo h ® 7 1 7 2
. g9y vbsinfsing J’ J [_ xo(3{x;-h) +xa2) N xa(3(x +h) +x1)
p b}

drx(1-v) ((xl—h)2+x3)2 ((xe+h) ‘+x?_:)9

}} dodx.  (3.119)

Because the last two integrands are odd functions of x; those integrals
vanish. As shown in the appendix, the integral of each term in the second
integrand is also equal to zéto, while the third term in the first integrand

contributes nothing to that integral. Then

epibsinﬁcosm
Uint;disl/epi = 222 y, P L{—fl'rrh)
_ ~2u(14v)fhbsinfcosyp

This result may also be obtained by calculating the work done on moving a

dislocation from the free surface into place at the substrate/epilayer interface.

The magnitude of the interaction energy per unit area between an array of

dislocations of spacing d and a strained epilayer is

Eint,dist/ epi = 2”(1+")|({11;1))31nﬁ°059°. (3.1.21)
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If the dislocations relieve strain in the epilayer, then the interaction energy is
negative. If the epilayer is capped, or if it consists of multiple strained
layers, then the magnitude of the interaction emergy per unit area is found by
replacing [f| by |favg|,where favg is the average value of the misfit strain in

the epilayer.

It s energetica.lly favourable to place a dislocation at the
substrate/epilayer interface when the decrease in the elastic energy of the
system resulting from the interaction between the dislocation and the epilayer
exceeds the self energy of the dislocation. The critical thickness he above
which it becomes favourable to introduce a single dislocation to the

substrate/epilayer interface is then given by

2u(14v) | {| hcbsinfcosy _ ,ubz(l-ucoszﬂ) In (ahc)
=) N T =) b/

or

2
_ b(l-vcos ) ah
he = gy [TTsingeoss & (50

(3.1.22)

where o is defined in equation (3.1.14). Equation (3.1.22) is the classical
result of Matthews (1975).

3.1.4. Analysis of One-Dimensional Dislocation Arrays

In order to fully describe the contribution of an array of dislocations

of spacing d to the overall elastic energy of a strained epitaxial system, it is
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necessary to determine the interaction energy between the dislocations that
make up the array. Both of the arrays described in section 3.1.2 are
considered. The method used to calculate the interaction energy is indicated
and the results used to find the equilibrium dislocation spacing of a

one—dimensional array in a strained layer.
A) Mixed Dislocations of Similar Orientation

Consider an array of N dislocations occupying a length L as shown in
fig. 3.2, where L is large. Then edge effects are minor, and, to an excelient

approximation, the interaction energy per unit length is given by
Uintdist/dais1 = (N-1)Uq + (N-2)u,y + (N-3)Uqq4--s (3.1.23)

where Uy, Uy , Uyq , etc. are the interaction energies between a pair of
dislocations of the same sign separated by distances d, 2d, 3d, and so on.

The interaction energy per unit area as L ~ o is
i — N— —3
Eint,dist/disl = 1{;2: %[mﬂyud + (—Ng)um + (HN")Uad +]

1 [+ 1}
=1 2l (3.1.24)

i)

for the coefficient of each U,y can be made arbitrarily close to unity for

sufficiently large N.



Figure 3.2: N dislocations of spacing d in a finite epilayer. L = Nd.

54
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The interaction energy per unit length of dislocation between two

edge dislocations of the same sign having their Burgers vector parallel to the

free surface is given by

2 ¢ 2 3 4 23
b 1 4h'xg — X3 48h'x, — 4h'x)
Ud = 5 T B V] = dXQ
ﬁ%l—_i}jd[ *2 (xa+4h)" (xa4dh')" ]
2 p] 3 7 1 4
pb d'+4h 12h “d"+16h 052 3 125
4r(1-v) [ ( d2 ) + (d2+4h2)2 , Io. (3.1.25)

In the case of two .- ge dislocations of the same sign having their Burgers

vectors perpendicular to the free surface the pair interaction energy per unit

length is given by

v = b m[(x,-h)“ ~(x)d eth)’ = (xg+R)d]
d 2”(1"")}[ ((xrh) +d)’ ((xi+h)+d )’
4 2h()xph)’ 4 (Bxi+6hed’ d‘)] ax,
((x;+h) +d )
2 p 2 2.1
= 411(“;_1}) [m(d “;‘ih ) - %i;‘i?ﬂ, d>2rg. (3.1.26)

Further details concerning the above integration may be found in the

appendix. In the case of two screw dislocations of the same sign, the

interaction energy per unit length is given by
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2 2 2
= ), dson (3.1.27)
d

Now screw components do not interact with edge components, and the
symmetry of the array indicates that there is no net interaction between edge
components of different types. Therefore these types of interactions do mnot
need to be considered. Then for an array of mixed dislocations of similar

orientation we have

2 3 @ )
o/t = Lg25 ) IHL%%)]
n

+ pbzsinzﬁcosch g 12n°d’h *+16n"
T o (2 an )]

wb’sin’fsin’p 2 4n'd’h’44gh’ (3.1.28)
4T(I“V)d n=i (n2d2+4h2)2 ! o

or, making use of the series and products compiled by Hansen (1975},

2 2
Eintdisl/dist = ”b‘h(r%'l'fﬁ‘)’flﬂ ln{Q%Esinh(?%@)]

1 1 2 2 1
pb'sin fcos ¢ |27h . 27hy 27 h . 227h 1
+ S ioyd [ T o) - Z s 5) — 2
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T . 2 .1
- thsin for o |\ Zheom + 2”dh csch’E) - 3, d>on. (3.1.29)

This result is equivalent to that obtained by Willis e al (1990), although the
form of the equation is different. The total elastic energy per unit area of the

system is

2 : -
P = 2400 L L

2 2 2 .2
" b sin B(cos @ — sin ¢) n Ucm_e]

8w(1-v)

. 2
_ 2p(1+u)|({|_1;1;31nﬁcosg + ub 4(1111{11&05 ﬁ) In [ Q‘]{Smh(%h)]

ub sin ﬁcos v |27h_ .. 27h 9 1,27h {
+ 43‘(1—1’)(1 [ Oth( ) S ch ( -

,ub sin ﬁsm@ 27h . _.y/27h
Ta(1-v)d [ ~coth(=7)

ﬂ 2
+ 2B eqen 3Ty %], h>ro, d>2r0.  (3.1.30)
4

The equilibdum spacing of this array is found by setting the partial
derivative of Eiotal with respect to d equal to zero and solving for d. In the

limit h - o, we have
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2 2 2
1- +2sin b
a={ ;%iii)?f[:iﬁﬁcggfo 2 (3.1.31)

When 8 = g, d = (—1—:’_%)-5[%, while if § = 0, the spacing of the dislocations
is infinite. If the epilayer is in a state of plane strain rather than biaxal
strain (this would arise from a lattice mismatch of { along the x; direction
and zero along the x; direction), then an array of mixed dislocations of

similar orientation relieving this strain has, in the limit h -+ w, a spacing of

2 L2, 2
d = ((1-v)cos f+2sin fcos p)b (3.1.32)
- 2]ffs1npcosy ) o
If the epilayer is capped, or if it comsists of multiple strained layers, then the

total energy and the dislocation spacings may be found by replacing { by favg.
B) Mixed Dislocations of Alternating Orientation

The energy arising from interactions between dislocations in a
one-dimensional array in which those components not relieving misfit strain
(i.e. screw and edge with Burgers vector perpendicular to the free surface)
alternate in sign along the length of the array is best calculated by
considering those components separately from the component relieving misfit

strain. For the latter we have from previous results

2 2 2 . 2 2.2 12 4
b sin fcos o 4h 12n'd h +16h
Eintydisl/dist = & M(li,)d 2 ln(nl;Il(1+;,?) + (n2d2+4h2)2
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pbﬁrll-g():gi In(ySpsinb(EH

_ 27 h csch (211'h)
d

—-& ; d>2rg . (3133)

For those components not relieving misfit strain we have, proceeding as

before,

Uint,aist/dist = — (N-1)Ua + (N-2)Uyq
_ (N-3)Ugq + (N~d)Ugq — ...  (3.1.34)

as the interaction energy per unit length of dislocation in an array of N
dislocations occupying a lemgth L. The interaction energy per unit area

between these components as L - o is

[14] m
Eint,disl/ disl = %[ngo—ut 1) d+n§1U2“d]' (3.1.35)

As was the case for mixed dislocations of similar orientation, it is not
necessary to consider interactions between screws and edges or between edges
of different types in the array. Then the energy per unit area arising from
interactions between those components in the array which do not relieve

misfit strain is



2, 02,12
. _ pbsin fsin
Eint,dis1/dist =

m h? @ 4’
In( T (A4+-—)) = ln{ T (1+———=7—)
iy =t n'd n=0(2n+1)d

2 2 © 2 ® 1
+¢%P%Mﬁpﬁ%m-muuu—ﬁ%ﬂﬂ

n=0" (9n41)d

gb'sin’gsin’y [ 2 4(2n+1)d h +48h
+ T rIv)d
n= ° ((20+1) “d'+4h )

_ 2 4n'(2d)'h "+dsn’
21 (n'(2d) +4h )"

d>2ro, (3.1.36)

or in closed form {Hansen, 1975),

bns' 285' !
1N 1n
Eintyaist/gis1 = £ S 9

IR [ln(%sinh(gh)) - 1n(cosh(’a’§))]

%%S_g [1n(—Hslnh( )) — In(cosh(¥ ))]

Th
T ——(dcoth(

2,2, .1
_ pbsin fsin g Ld _d_) _ whcschn(gg))

+ —ﬂ}(dcoth( } + whesch’( d)) - %}

+ pbé:;rllj;ln 4 [L};-(dta.nh( } + whsech ( ))
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+ 3—ﬂ;{dtzmh I - whsech( ))}, d>2r,. (3.1.37)

The total emergy per unit area arising from interactions between dislocations

in the array is given by the sum of equations (3.1.33) and (3.1.37):

Eint,dist/disl = bg{? %gﬁtln(ﬁ%sinh(z“h))

2
+ 21rh th(2?l'h) 2 ”SCh (21}1) _ %]

+ ,ubns i naﬁsinaqo
4m( 1-v)d

ln(—Et.anh( )) (tanh(”h) - coth( ))

——,—(sech( )+csch( ))+ ]

2 3
+ ub cos é]n(%ﬁta.nh(g-ll)), h>1g, d>2r0. (3.1.38)

Adding this expression to Eepi + Edist + Eint.disl/epi Bives the total elastic
energy per unit area. It is possible to determine the equilibrium spacing of

the array as before. As h + o, we have

: bsi
111111:1 d = —sdf?_-g‘):-c‘)-%‘e. (3.1.39)
l ]



62

In the case of an epilayer which is in plane strain, we have for this array

lim d = ‘lsifl‘-?‘l’-‘ﬂ. (3.1.40)
h-ta

3.1.5. Two—Dimensional Arrays
A) Interaction Between Orthogonal Dislocations

In analyzing arrays consisting of two orthogonal sets of dislocations
relieving biaxial strain in an epilayer, it becomes necessary to consider the
energy arising from interactions between dislocations at right angles to each
other. This may be achieved by examining each component of the Burgers

vector separately.

An edge dislocation at x; = h lying parallel to the x; axis on a slip
plane which is at an angle ¢ relative to the free surface has
013 = 0331 = 023 = 033 = 0. There is therefore no interaction between it
and an edge dislocation with its Burgers vector perpendicular to the free
surface, lying parallel to the x; axis, brought into place at x; = h
Similarly, there is no interaction between the edge dislocation lying parallel to
the x3 axis and a screw dislocation lying parallel to the x; axis brought to
x; = h. Thus there are no contributions from interactions among these

’
components to Ejne,disl/disl.
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An array A of identical screw dislocations of spacing d lying parallel
to the x; axis interacts with an array B of identical screw dislocations lying
parallel to the x, axis through the terms e;; and ej;, which, as pointed out
by Willis et al. (1990), may be thought of as the sum of an average strain
and a periodically fluctuating strain having a mean value of zero. The
fluctuating strains of array A have no net interaction with the strain field of
array B, and vice versa. Thus the only interaction between the arrays arises
from the average strain of each array. Now array A imparts an average
shear strain of magnitude le“avgl = |euavg| = gﬁ to the thin epilayer. If
the array B is of opposite sign, a pure twist boundary is formed; the net

value of e;3  in the epilayer is then zero. Since for each array considered
avg

1
. . . 2
on its own we have a strain energy density due to exs of 2ueq = ‘ﬁ,,
avg aAvE 2d
the interaction enmergy per unit area of the orthogonal arrays of screw
b’h
dislocations is — &5, Therefore the interaction energy per umit area between
d

such arrays is
' b’h
Eintdist/disl = * "—dr, (3.1.41)

depending on the relative signs of the arrays. If the sign of the screw
dislocations alternates along the lemgth of each array, there is no interaction

between the two arrays of dislocations.

In the case of two orthogonal arrays of edge dislocations with their

Burgers vectors parallel to the free surface, we have
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Eint,dist/dis) = 1im LLij;O');j e3jdv, (3.1.42)

L-w
where L is measured along the x;, x2 and x3 axes. aﬁ‘j are the stresses
associated with the array of dislocations lying parallel to the x, axis, and egj
are the strains associated with the array of dislocations lying parallel to the
X3 axis. Since eg; = U, 0'%2 = 0%1 = 0, elia = e%l = 0, 0%3 = 0'%2 = 0,

L-a

‘ ) LB A B
Eint,disl/dis] = llm[i-gjzauendv + E‘q[dzzﬁzdeJ

L=w

= 1im[La*}1e‘h + f,[a%ze'ézdv],

where .::r‘!lL 18%1 is the average value of a%;e‘}, in the epilayer. Therefore

Einndist/dist = lim ﬁ[a“é‘geggdv, (3.1.43)

L-m

—

because the average value of a"{l is a‘u = 0 (this is shown in the appendix).

Then

e —
e —

Binndist/ais = lim [%, a‘sze%mxzdxa], (3.1.44)

L~

0
X |

for the integration of ed; over the x;x; plane yields a result which is a

constant for 0 < x; < h and zero for x; > h. Thus
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L-m

’ . h B
Eint,disl/dist = lim [Eg v(a%1+033)eggdxgdx3]

S —— e
e

S

= h'V(Uler\"Uéa)e%z

= h. 2L ehaeds
(1-v)

_ 2mb'h

e (3.1.45)

is the interaction energy per unit area between orthogonal sets of edge

dislocations with their Burgers vectors parallel to the free surface.

B) Mixed Dislocations of Similar Orientation

Orthogonal arrays of mixed dislocations of similar orientation relieving

biaxial strain in an epilayer give rise to a total elastic energy per unit area

3 3 2
f -
Erotal = 2 1+—x{y b, %[ b (1 uigs 1n(%%)

2,2 2 2
ub sin A cos p — sin )
+ 81['(1—1/) + UCDI.'
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27h 27h 2rh 3,27h
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2,32, 12 1.2
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(1-v)d" d

with the sign of the last term depending on the relative signs of the

orthogonal screw dislocations. The equilibrium spacing in the limit h - o is

_ ((1-»)cosf+(1+v)sin®feos’p)b
lim 4 = (I+)[ T]s 1 nfcosp (3.1.47)

for orthogonal screw components which have a positive interaction energy, and

lim d = bii?{i‘l’ﬂ (3.1.48)
h~+m

for orthogonal screw components which have a negative interaction energy.

When g = ’Z’ in both cases ]lllm d = Ef.%?.‘ﬁ_
=m
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C) Mixed Dislocations of Alternating Orientation

In the case of misfit strain in the epilayer being relieved by mixed
dislocations whose components which do not relieve misfit strain alternate

along the length of the array, the total elastic energy per unit area is

2
Eroal = 2 1+£Uf h

2
p.b sin ﬂ(cos w — sin )
+ g 1-7) + Ucore

b (1-
3l

_ 4p(1+v)| | hbsinfcosy
(T-v)d

2.1 2
v el ) + SheonEgh - 2 'R - |

] 1
1 iy sa o ‘*”[ln(%atanh(’a@)) + Ptann() - cotn(@)

rh ? ah 2 mh
- E,—(sech (77 + wch (7)) + 3

F's 2
4 E0C08 B tann(ThY) + 21‘“‘“’(?‘“)?05 2 b>r, d>2r (3.1.49)

Solving for the equilibrium dislocation spacing in the limit h - » as before,

gives
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. bsinfcos
lim d = ——m—f . (3.1.50)
h-e

3.1.6 Computations for Silicon—Germanium Strained Layers Grown on §i{100)
A) Critical Thickness

Values of the critical thickness for 60° and edge dislocations in
Si,<xGex grown on Si may be obtained through equation (3.1.14) on the
insertion of the appropriate parameters. This is the thickness at which it
becomes emergetically favourable to introduce a single dislocation to the
substrate/epilayer interface. As Jain et al. (1992) have observed, the critical
thickness depends on the type of array of dislocations present relieving strain
in the epilayer; this point will be returned to shortly. In the calculation of
the critical thickness, the magnitudes of the core energy and the cut—off
radius are key quantities. Nandedkar and Narayan (1987, 1990) have studied
the core structures of several types of dislocations in silicon and germanium
using four different interatomic potentials. Here use is made of their core
energies for the 90° 3{110] dislocation (0.49 eV A") and the 60° 3(110]
dislocation (0.95 eV A-l) in silicon as calculated using the Stillinger-Weber
potential. The core energies are not greatly changed if the dislocation sits at
an Si—Ge interface (Nandedkar and Narayan, 1989). In both cases the cutoff
radius is 5 A. Since Vegard’s law holds in Si-Ge alloys (Dismukes, Ekstrom
and Paff 1964) the value of f is related to the amount of germanium in the
epilayer through f = 4.0x10.2x, where x represents the fraction of germanium

in the layer. Then setting p = tS.SlxlOmN/m2 and v = 0.218 (Hirth and
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Lothe 1982), and with § = 90°, ¢ = 0° for the edge dislocation and
g = 60°, ¢ = 54.736° for the mixed dislocation, the results shown in
fig. 3.3 are obtained. In this figure the sclid curve vepresents the ecritical
thickness for 90° (Lomer) dislocations, while the dashed curve corresponds to
60° mixed dislocations. The 60° dislocations have a core parameter of
o = 6.49 (o = 5.62 if equation (3.1.13) is used) and a critical thickness of
385 A at a composition of 10% Ge, as compared with a core parameter of
@ = 546 (a = 4.56 if equation (3.1.15) is used) and a critical thickness of
173 A at 10% Ge in the case of 90" dislocations. Because of uncertainties in
the value of the core energy and cut—off radius, the values of the critical
thickness given here are not truly accurate to 1 A. The calculation to the
nearest angstrom is merely intended to illustrate relative chz.ges in the
critical thickness with variations in the core energy and Ge concentration. If
the value of the core energy of the 90° dislocations is doubled, so that it
assumes a non-physical value of 0.98 eVA-l, a core parameter of « = 11.77
and a critical thickmess of 202 A at a 10% Ge concentration are obtained.
This change in the critical thickness is only 17% of the actual value of 173 A
for 90°* dislocations. It is therefore clear that the critical thickness is not a

sensitive function of the core energy.
B) Equilibrium Dislocation Spacing

The method used in this thesis to arrive at the equilibrium spacing of
a given array of dislocations relies on the calculation of interaction energies
between the various sources of internal stress present in the strained layer

system. If the interaction energy between a dislocation and the epilayer



70

100
o | !
go— | |
70 -

80 —

S0

40

Critical Thickness (nm)

30

20

Percent Ge

Figure 3.3: Critical thickness vs. percent Ge for 90° dislocations solid
curve) and 60° dislocations (dashed curve) in the case of Si-Ge
deposited on Si(100).
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exceeds the self energy of the dislocation, it becomes energetically favourable
to introduce dislocations to the substrate/epilayer interface. The equilibrium
spacing is determined by the form of the energy arising from interactions
between the dislocations which make up the array. A knowledge of the
nature of this inte:action energy is essenmtial, for without this term the elastic
energy of the system continually decreases on the introduction of dislocations
at thicknesses exceeding the critical thickness. Matthews (1975) was able to
arrive at an equilibrium dislocation spacing through the creation of a term

which plays the role of an effective interaction energy, although it has not

1
generally been recognized as such. This is the quantity 2&%&%@# associated
1—v)d

with the elastic strain in the film. It stands separately from the self energy
of the dislocations, and is not dissimilar from the terms in the present
treatment arising from orthogonal dislocations making up a two-dimensional
array.

Computed results for the spacing of 90° (Lomer) dislocations in an
Sig.sGeq.; layer deposited on a Si(100) substrate are represented by the solid
curve shown in fig. 3.4. Since there are no surface steps associated with
these dislocations, the exactness of this solution (within the context of
isotropic elasticity) is determined by the extent to which the value of the
core enmergy is accurate. Also shown in fig. 3.4 is a dashed curve which
corresponds to Matthew’s approximate solution (1975). It is remarkable how
closely the two curves match — the critical thickness for Matthew’s
approximation is 146 A, while that of the present calculation is 173 A.
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Dislocation spacing vs. epilayer thickness for 90° dislocations
relieving strain in Sig.sGeo.q deposited on Si(100). The solid
curve corresponds to the present work, while the dashed curve
represents Matthew’s approximation.
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The results of computations carried out for 60° dislocations lying on
{111} planes in an Sig.¢Geg.; layer deposited on a Si(100) substrate are shown
in fig. 3.5. There are three cases to distinguish: 60° dislocations of similar
.orientation whose orthogonal screw components give rise to a negative
interaction emergy (the lower solid curve), 60° dislocations of alternating
orientation (the dashed curve), and 60" dislocations of similar orientation
whose orthogonal screw components give rise to a positive interaction energy
(the upper solid curve). It is interesting to compare the behaviour of the
array of dislocations of similar orientation whose orthogonal screw components
form a twist boundary with that of the array of dislocations of alternating
orientation in the vicinity of the critical thickness associated with a single 60°
dislocation. This cannot be seen in the graph shown in fig. 3.5, but may be
seen in table 3.1, in which the dislocation spacing of the two arrays is shown
at points just greater than the critical thickness. It may be seen that the
spacing of the array of alternating dislocations bccomes very large as the
thickness approaches the critical thickness, while the array of similar
dislocations does not become widely spaced. This is consistent with the
findings of Jain et al. (1992) for this array - at its critical thickness, a finite
number of dislocations are present in the epilayer. However, the critical
thickness of the array of 60° dislocations of alternating orientation is

apparently identical to that of a single 60° dislocation.

Both the dislocations of alternating orientation and the dislocations of

similar orientation whose orthogonal screw components give rise to a negative
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Figure 3.5:

I 7 T
100 200 300 400 560
Epilayer thickness (nm)

Dislocation spacing vs. epilayer thicknmess for 60* dislocations
relieving strain in Sig.gGeo.; deposited on Si(100). Lower solid
curve: dislocations of similar orientation whose screw components
give rise to a negative interaction energy. Dashed curve:
dislocations of alternating orientation. Upper solid curve:
dislocations of similar orientation whose screw components give
rise to a positive interaction energy.



Dislocation Spacing

Epilayer

Thickness Similar Alternating

(um) (um) (nm)

38.40091 818.987 8.783=107
38.40092 818.965 2.702x107
38.40093 818.943 1.596x107
38.40094 818.921 1.133x107
38.40095 818.868 8.780x108
38.40096 818.875 7.167x108
38.40097 818.854 6.055x106
38.40098 818.831 5.242x108
38.40099 818.809 4.621=108

Table 3.1: Equilibrium spacing of two-dimensional arrays of mixed
dislocations in the vicinity of the critical thickness.
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interaction energy appreach the same spacing of 2—?—{]— as h becomes large, but
in the latter case the convergence is more rapid. The fact that orthogonal
screw components can form a low energy twist boundary outweighs the
greater  dislocation—dislocation  interaction  emergy  associated with a
one—dimensional array of dislocations of similar orientation. This may also be
seen in a plot of the energies of these arrays. Figure 3.6 shows the energies
(at equilibrium spacing) of an array of 60° dislocations having a similar
orientation whose orthogonal screw components form a twist boundary (the
solid curve) and of an array of 60* dislocations of alternating orientation (the
dashed curve). It is clear that the array of alternating dislocations has the

greater energy at all thicknesses.

The formation of a twist boundary requires the cooperative nucleation
of a large number of dislocations, while an array much more like the set of
dislocations of alternating orientation is produced by a random nucleation of
dislocations. At 10% Ge, the equilibrium spacing at large thicknesses for the
case of 60° dislocations whose screw components form a twist boundary
corresponds to a lattice rotation of 0.23 degrees. This is difficult to detect
by means of iransmission electron microscopy, but could be observed using
X-ray diffraction experiments. It is probable, however, that actual nucleation
events are random, so that the spacing in a physical sample would closely
approximate that given by the dashed curve in fig. 3.5, provided that kinetic
barriers could be surmounted and equilibrium attained. In addition, the
equilibrium critical thickness in a physical sample is likely to be that

associated with a single 60° dislocation rather than the critical thickness
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determined by Jain et al (1992). However, since the difference between the
two values of the critical thickness is so small, it could never be detected in

practice.

3.2. Energies of Low Angle Grain Boundaries in a Half-Space

3.2.1. The Energy of an Array of Edge Dipoles

It is possible to use the method of section 3.1 in order to determine
the energies of varicus types of low angle grain boundaries lying parallel to
the free surface in a semi-infinite solid. Very often these boundaries are made
up of dislocations which have one or more components alternating in sign
along the length of the boundary, and it is therefore necessary to obtain
expressions for the energies of one—dimensional planar array of dislocation
dipoles. The energies of two of these arrays (screw and edge with Burgers
vector perpendicular to the free surface) have been given in section 3.1.4
(they may be obtained from equation (3.1.37) plus the self energy of the
dislocations in the array). Here an expression for the energy per unit area of
an array of edge dipoles having their Burgers vectors parallel to the free
surface is developed which may be used in calculating the energies of low
angle grain boundaries in a half-space. Following the method of section 3.1.4,

this energy may be written as

2
B = §lgti(he) + D + Ueon
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3 16h
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or, in closed form, (Hansen 1975)
1 2h
1
+ ﬁ(fi‘b—ﬁ[ln(—ﬁt h(F Iy + a—( oth(1 By _ tank( h))
' 1r2h2 3, 7h 1, 7h
- —d,—{sech (77) + csch () — 4|, h>ry, d>2r, (3.2.2)
2

3.2.2. Tilt Boundary Energies

Consider the array of edge dislocations shown in fig. 3.7. Making use
of the results of section 3.1.4 and the previous section, its energy may be

written as

1 b yb sin ﬁ(cos ® — sin rp)
E= H[Zvrh uil (I0)+ 87(1-v) + Ucore
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Figure 3.7: Array of edge dislocations forming a tilt boundary lying pa.ralléi
to the free surface in a semi-infinite solid.
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In the limit h - «, the energy becomes

pb sin gl d
E= w(l-u)d[ Mgrry) *+ 1

' 2
+ g%-‘izg_sﬂg (m‘o) + HQ&'[E ) h>r0: d>2l’0. (32.4)

When ¢ is close to 90°, cosztp 8 0 and sinntp ¥ 1, giving

3

_ __pb d U
E= 47r(1—u)d[ln(2no) +1 re

+ - h>rq, d>2r,, (325)

which is a form of the Read-Shockley equation (Read and Shockley 1950).

There are geometrical restrictions imposed by a crystal lattice on a
tilt boundary lying parallel to a free surface. In effect ¢ and d are not
independent variables. Consider a simple cubic lattice with a surface normal
of (100), a dislocation line direction of [001], and a Burgers vector of a[n19].

If 6 is the angle of misorientation between the two crystals, then
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- =3 ¢ Lattice geometry requires that

-33— = sin—g— = sin(q"zr— — ) = cosy, (3.2.6)
and therefore that
2 3
coszzp = —-13,— : sinztp =1- —%— . (3.2.7)
4d 4d

In the case of the fcc/diamond cubic lattice, if the surface normal is (100)
before the formation of the boundary, a tilt boundary can be constructed from
60° %(110) dislocations (assumed here to be undissociated) in which edge
components having their Burgers vectors parallel to the free surface and screw
components alternating in sign along the length of the array as shown in
fig. 3.8. Lattice geometry requires that for an angular misorientation of 0

between the two crystals

0=—bs—id50°—; qo=gogt—g-—, (3.2.8)

where ¢ is the angle that the slip plane of the dislocations makes with the
free surface before the boundary is formed and ¢ is the corresponding angle
after the boundary is formed. For small 8, ¢ ¥ ¢, and the energy per unit

area of the boundary may be written as

2 2 2, 2 2 2
_ 1|ub (1-icos 9h,, ub'sin G(cos ¢ — sin )
E= H[ %H 1-v) ln(r—0)+ 8x(1-v) + Vcore
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Figure 3.8: Ilustration of a tilt boundary in a semi-infinite foc/diamond
cubic lattice; surface normal = (100).
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In the limit h - o, the energy per unit area becomes

2, 3 2
E = pb sin ﬁsm zp[ (?rro) + 1} +pb sin ﬁcOSpln(

4x(1-v)d dx(1-v)d TIo

2 1
b 2dy , U
+ 4‘—1%5—@ In(3) + 52, h>ro, d>2n0. (3.2.10)

Note that in this limit (which gives the energy of the boundary in an infinite

crystal), the enmergy associated with the alternating components varies as
2d . .

n(2%) rather than In(y3-). Read and Shockley (1950) obtained this resul

when analyzing an array of alternating screw dislocations, but not the

corresponding result for an array of edge dislocations.

If in an fec or diamond cubic material the surface normal is (11Z),
the (111) planes are perpendicular to the surface and the emergy per unit area
of the tilt boundary (taking sinzgo ¥ 1) is
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In the limit h - o, the energy becomes

2
pb sin B ub cos 3 ,.,2d
E= da(l-v)d ln( ) + 1| + Txq 111(-rrg)
+ _U_car_e . h>1g, d>2r,. (3.2.12)

3.2.3 Twist Boundary Energies

The summation of dislocation—pair energies may also bz used to give
the energies of twist boundaries lying parallel to the free surface. Two cases
are given here. For a simple cubic lattice with a surface normal of (100) and

a Burgers vector of the type a(100),

2

+ ﬁbﬁ?{ln( d_inh(27h -
sepsinh(=)| ~ E—,— ,  h>rg, d>2r (3.2.13)
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For an fcc or diamond cubic lattice with a surface normal of (100), a twist
boundary lying parallel to the free surface made up of undissociated %(110)
dislocations has edge components in a parallel set of dislocations alternating in

sign. The energy of the boundary per unit area is

gb gl uco 2h pb sm bos — sm

b SmZﬁsmitg 1rh 7h _
+ TRI-0)d ln(-—Etanh( )+a—(tanh( ) oth( ))
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In the limit h = o,

E = %g[ln( ) + sin (p]

2 2
pb cos f§ d 2Ueo
+ B P () + =53¢, b, d>2n0 (3.2.15)
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CHAPTER 4

Experimental Procedure

Silicon—germanium  strained layers were deposited on 100 mm
Czochralski—grown S$i(100) substrates using a Vacuum Generators V80 MBE
system at NRC in Ottawa. The substrates were given an ozone exposure in
an ez site reactor for approximately 45 minutes in order to remove
hydrocarbon contamination immediately before introduction to the vacuum
system. Oxide removal was carried out in the MBE system by heating the

wafers to 900°C in a silicon flux.

Two short period superlattices were grown at a substrate temperature
of 400°C. The first was a 48-period structure in which 2 monolayers of Ge
alternated with 6.6 monolayers of Si ((Sis.6Ge2.0)4s), while the second was a
24—period structure in which 3.7 monolayers of Ge alternated with 9.3
monolayers of Si ((Sis.3Ges.7)2d). The data concerning the layer thicknesses
given here were obtained using double crystal X-ray diffraction. Both
superlattices were grown on a thick buffer layer and were capped with a 50 A
layer of Si. In addition, two homogeneous epilayers were grown at a substrate
temperature of 525°C. One had the composition Sig.3Geg.2 and was 1000 A
thick, while the other had the composition Sig.7Geg.; and was 500 A thick.

Once grown, the wafers were removed from the MBE chamber and sectioned

87
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for annealing in a Heatpulse 410 rapid thermal annealer. The short period
superlattices were annealed for 20 seconds at 450 and 500°C, and the
homogeneous epilayers for 20 seconds at 600°C. Cross—sectional specimens with
[110] foil normals and plan view specimens were prepared by mechanical
thinning followed by Ar ion milling. These were examined in a Philips CM 12
operating at 120 kV. The results of the microscopy (showing the behaviour of

dislocation sources in these specimens) may bte found in chapter 5.

An B-period strained layer superlattice consisting of 7.0 monolayers of
Ge alternating with 17.5 monclayers of Si ((Sii7.sGer.q)s) and capped with a
50 A layer of Si was also grown at a substrate temperature of 400°C. Again,
the layer thicknesses were obtained using double crystal X-ray diffraction
measurements. After growth had been completed, the wafer was removed from
the MBE chamber and sectioned for annealing. Four rapid thermal annealing
treatments were performed in.a Heatpulse 410 rapid thermal annealer: 20 s at
700°C, 200 s at 700°C, 2000 s at 700°C, and 300 s at 800°C. Cross—sectional
specimens with [110] foil normals and plan view specimens were prepared by
mechanical thinning followed by Ar ion milling, and were examined in a
Philips CM 12 at 120 kV in order to determine the means by which the
relaxation of the superlattice took place. The results (showing relaxation

occurring exclusively via twin formation) are presented in chapter 6.

Two Si,..Ge,/Si strained layer superlattices, one a 20-period structure
of Si layers 900 A thick alternating with Sig.75Geg.24 layers 500 A thick, and
the other a 20-period structure of Si layers 500 A thick alternating with

Sig.gsGeg.35 layers 100 A thick, were grown at a substrate temperature



89

between 400 and 500°C at 2 rate of approximately 3 Asl. Cross—sectional
samples having [110] foil normals were prepared using the method previously
described, and were again examined in a Philips CM 12 at 120 kV. The
results of these experiments may be found in chapter 7, which deals with

pagoda defects.



- CHAPTER 5
Dislocation Sources in Si—Ge Strained Layer Structures

The production of electronic devices based on strained layer structures
requires that the presence of misfit dislocations in the epilayer be kept to a
minimum, if not altogether eliminated, and there has therefore been a large
amount of research into the mechanisms by which the nucleation of such
dislocations takes place. The essential finding has been that while
homogeneous nucleation is an improbable occurrence (Matthews, Blakeslee, and
Mader 1976), a variety of heterogeneous nucleation sources are possible and
have been observed. These include the heterogeneous nucleation of half-loops
at the free surface of the epilayer (Perovic, Weatherly and Houghton 1990),
the nucleation of half-loops at defects at the edges of the sample
(De Cooman and Carter 1989), the extension of threading dislocations
introduced during growth (Matthews and Blakeslee 1974}, the nucleation of
loops at defects in the epilayer (Perovic et al. 1989), and the nucleation of
loops at a regenerative internal source (Eaglesham et ol 1983). Here a new
type of dislocation source in Si—Ge strained layer structures is reported. It is
shown that the relaxation behaviour of short period superlattices is different
from homogeneous epilayers of the same average Ge concentration, and that
the relief of strain in these superlattices can take place at relatively low

temperatures.
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Two short period superlattices ((Sig.3Ges.7)2¢ and (Sig.sGes.o)ss) and
two homogencous epilayers (1000 A of Sig.sGeg» and 500 A of Sip.7Geg.3)
having approximately the same effective stress acting on misfit dislocations as
the superlattices were prepared for examination as described in the
experimental procedure. The critical thicknesses of the strained layer
structures as calculated from equation (3.1.22) wusing o = 6.49 are:
(Sig.sGesr)as, 121 A; (SissGeno)ss, 158 A; Sig.sGegs, 167 A; and
Sig.7Geo.3, 102 A. Baribeau et al. (1991) have studied the as-grown structures
of the two superlattices examined here along with four other superlattices
using glancing incidence X-ray reflection, Raman scattering spectroscopy and

EXAFS.

Cross—sectional micrographs of the two superlattices in the as—grown
state are shown in fig. 5.1. The layers in the (Sis.3Gej.r)2¢ superlattice are
distinctly less pianar than the layers in the (Sig.sGea.o)ss superlattice; this is
due to the tendency toward the formation of islands in layers which are 34
monolayers of Ge in thickness grown on Si(100) (Mo et al. 1990;
Williams et al. 1991). Transmission electron microscopy did not reveal any
dislocations in either of these superlattices in the as—grown state. However,
annealed material examined using transmission electron microscopy showed the
presence of misfit dislocations which had clear points of origin. The
(Sig.3Ges.7)24 superlattice was the more unstable of the two; after annealing
far 20 s at 500°C a well defined dislocation network (seen in fig. 5.2) had
already developed in which dislocation sources were difficult to spot. However,
as shown in figs. 5.3 and 5.4, annealing for 20 s at 450°C revealed clear

dislocation sources in this material. It may be seen from fig. 5.3 that there
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(a)

(b)

. A0 P

Figure 5.1: Cross—sectional micrographs of as-grown (SinGen)p superlattices:
(a.) (Slg.sGez.o)u, (b) (Sig.3G83.7)24. g = 400.



Figure 5.2:
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200 A

Plan view micrograph of dislocation network in (Sip.3Ges.?)n
superlattice formed on annealing for 20 s at 500° C. Foil
buckling causes the image of the network to have a varying
intensity. g = 022 dark field.

-t
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- 800 mm

Figure 5.3: Plan view micrograph of dislocaiion source in  (Sig.aGes.r)za
superlattice annealed 20 s at 450° C. g = 022 dark feld, s>>0.
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180 Am

Figure 5.4: Plan view micrograph of dislocation source in (Sig.2Ges.7)as
superlatiice annealed 20 s at 450° C. g = 022 dark field, s>>0.
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are numerous points of localized strain in the superlattice. These werc also
present in the as—grown material. One of these points of stress concentration
has emitted a 60° %(110) dislocation whose entire length is visible in the
micrograph. The length of this dislocation is approximately 1.2 pm, which is
2-3 orders of magnitude greater than the length predicted for a 20 s anneal
at 450°C by equation (2.2.24), - the "semi-empirical”" -equation of
Houghton (1990) for the dislocation velocity as a function of the effective
stress. Another source is shown at a higher magnification in fig. 5.4. In both
figures, a dislocation segment extends directly up from the source to the
surface; this threading arm is pinned at the source. Another threading arm
glides away from the source and leaves behind a 60° dislocation which retieves

misfit in the epilayer.

Relaxation in the (Sis.gGeag)ss Superlattice took place at a higher
temperature than the (Sig.3Ges.7)24 superlattice. There were no dislocations
visible in a plan view sample which had been annealed for 20 s at 450°C,
although after annealing for 20 s at 500°C some dislocation sources become
active. This may be seer in fig. 5.5, in which two of a number of potential
sources have emitted 60° %(110) dislocations. More of these sources are shown
in fig. 5.6 as imaged in dark field using g = 022. There is a bend contour
running across the micrograph; those sources lying in its path have s ¢ 0 and
exhibit the clear -white/black asymmetry associated with a small misfitting
coherent particle {Ashby and Brown 1963). The sense of this asymmetry
indicates that these defects behave as localized points of expansion. A view of
an activated source is shown in figs. 5.7 and 5.8, while that of an inactive

source is shown in figs. 5.9 and 5.10. Some of the sources appear toc be
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3RC M .

Figure 5.5: Dislocation sources in (Sis.sGes.0)4s superlattice annealed 20 s at
500" C. g = 022.
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F0C A

Figure 5.6: Dislocation sources in (Sig.0Ges.0)4s superlattice annealed 20 s at
500°C. g = 022 dark field.
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Figure 5.7: Plan view micrograph of activated dislocation source in
(Sig.6Gea.o)as superlattice annealed 20 s at 500° C. g = 022
bright field.
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Figure 5.8: Plan view micrograph of activated dislocation source in
(Sig.sGeq.0)as superlattice annealed 20 s at 500° C. g = 022
dark field, s>>0.



Figure 5.9:
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Plan view micrograph of an inactive dislocation source in
(Sig.sGes.0)1s superlattice annealed 20 s at 500" C. A 60°
dislocation relieving misfit is visible above the inactive source.
g = 022 bright field.
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150 P

Figure 5.10: Plan view micrograph of an inactive dislocation source in
(Siﬁ.ﬁGe2.0)48 superlattice annealed 20 s at 500° C. A 60°
dislocation relieving misfit is visible above the inactive source.
g = 022 dark field, s>>0.
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homogencous objects. Others, usually larger than the homogeneous sources,
have a highly strained region in their centre. Both types of defect were
present in the as—grown material. In contrast to the behaviour of the two
short period superlattices, neither of the homogeneous epilayers showed any
sign of dislocation activity on annealing for 20 s at 500°C. Even 20 s at
600°C was insufficient to produce any visible dislocations in the TEM
specimens. Higher temperatures are required in order to nucleate a large

number of dislocations in these structures during a 20 s anneal.

In comparing the relaxation kinetics in various strained epitaxial
layers, it is useful to consider the effective stress acting to drive dislocations
through an epitaxial structure. This serves as a reference point in analyzing
relaxation in different strained layers — if two structures have the same
effective stress but different overall relaxation kinetics, then the variation is
attributable to a difference in nucleation rate. Equation (2.2.10) may be used
in calculating the effective stress, with ¢ = 54.736°, § = 60°, A = 45°,
v = 0218, 4 = 6.81x10" N/m? b = 3.84 A, and o = 6.49. The results for
the two superlattices (where an average value of f has been used in
calculating the effective stress) and for the two homogeneous epilayers used in
this study are shown in table 5.1. It may be seen that the effective stresses
in (Sig.sGeso)4s and (Sig.3Ges.7)24 superlattices are similar. However, as has
been seen, the rate of relaxation observed experimentally is significantly higher
in the (Sig.3Ges.7)ay superlattice. This is due to differences in the nature of

the sources in the two superlattices.

In both superlattices, the origin of the sources may be traced back to



Table 5.1:

Strained Layer Structure

Effective Stress (Nm-?)

(Sig.6Gez.0)4s
(Sig.aGes.1)u
Sig.sGeq.2] 1000

Sip.7Geq.3] s00

4.97x108
6.16x108
5.40x108
7.62x108
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Effective stresses in (SinGen)p short period superlattices and in

homogeneocus epilayers.
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the development of non-planar layers during growth. This non-—planar
character is more pronounced in the (Sig.3Ges.7)as superlattice as it has
germanium layers which are of greater thickness than those in the
(Sig.sGeag)ss superlattice. It is interesting that the (Sig.sGea.)ss superlattice,
grown with germanium layers 2.0 monolayers thick, eventually develops
non—planar layers. Previous studies (Mo et al. 1990; Williams et al 1991)
have indicated that a single layer of germanium 2.0 monolayers thick
deposited on germanium remains two—dimensional. Studies of Si-Ge
superlattices grown on Si(100) carried out using X-ray reflection, Raman
scattering spectroscopy, and EXAFS have suggested that two—dimensional
growth is maintained as long as Ge layers are less than 5 monolayers thick,
but that at the same time some interfacial mixing 1is present
(Baribeau et al. 1991). The results obtained in this study indicate that the
deviation from ideal two—dimensional growth is in fact greater than a minor
degree of interfacial mixing. The sense of the white/black asymmetry
associated with the dislocation sources in the 48-period superlattice is that
corresponding to point sources of expansion. These are likely to be clusters of
germanium atoms. Evidence of Ge clustering has been found in Si-Ge
superlattices grown on Si(100) with a Ge layer thickness of 12 monolayers
(Baribeau et ol 1991); the present results suggest that such clustering can

occur even at Ge layer thicknesses of 2.0 monolayers.

It is worth considering the means by which a cluster of germanium
atoms may act as a dislocation source. Such a cluster sitting near a free
surface can punch out a dislocation half-loop which relieves the stress

concentration near the cluster. As shown in fig. 5.11, there are two possible
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(a) (b)

A T

Figure 5.11: Dislocation configurations relieving stress concentration near a
germanium cluster: (a) configuration relieving misfit both at the
cluster and in the epilayer, (b) configuration relieving misfit
only at the cluster.
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ways in which the half-loop may be attached to a cluster. Only one of these
configurations has the potential to expand and relieve misfit in the epilayer;
this is also shown in fig. 5.11. The other configuration cannot simultaneously

relieve misfit at the cluster and the substrate/epilayer interface.

When activated, the sources in both superlattices are single—ended.
Only one of the threading arms of the half-loop glides freely; the other is
pinned at the site of the localized stress concentration. It has been pointed
out (Capano 1992) that of the two threading arms of a half-loop lying on
{111} planes in a Si(100) growth system, one is 60° in character and the
other is a screw segment. The arm which serves to better relieve the stresses
at the superlattice inhomogeneity is the one that remains pinned. This is
probably the segment having the edge component, for it can serve to relieve

dilatational misfit.

Transmission electron microscopy indicates that the number of points
of localized stress concentration per unit area giving rise under two-beam
conditions with the deviation parameter s © 0 to strong contrast relative to
the background intensity is of the same order of magnitude in both
superlattices, that is, approximately 109 per square centimeter. If each of
these points were equivalent dislocation sources, the relaxation behaviour of
the two superlattices would be roughly identical. However, the points of stress
concentration in fact represent potential dislocation sources having a spectrum
of activation energies, with the number having activation energies low enough
to pgenerate dislocations at 450°C being significantly greater in the

(Sig.3Ges.7)2s superlattice than in the (Sis.sGesg)ss superlattice. Thus
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numerous activated sources were visible in TEM specimens of the 2d-period
superlattice which had been annealed for 20 s at 450°C, while none were
visible in TEM specimens of the other superlattice given an identical

annealing treatment.

In contrast to the behaviour of the two superlattices, the two
homogeneous epilayers displayed no signs of dislocation activity even on
annealing for 20 s at 600°C. The rate of relaxation in the superlattices was
much greater than in the corresponding homogeneous epilayers, in spite of the
slightly greater effective stress in the homogeneous epilayers. If the
superlattices were pgrown at the temperature used for the homogeneous
structures, they would have been fully relaxed in the as—grown state, provided
that the same sort of interfacial perturbation developed at the higher
temperature. The difference in the relaxation behaviour of the two types of
strained layer structure mai,r be inferred to be due to the vastly greater
number of low activation energy sources in the superlattices. Since the
homogeneous epilayers are made up of an essentially uniform deposit, there is
no possibility of the formation of points of such a high stress concentration as
in the case of the superlattices, and therefore dislocation sources which can be

activated in the temperature range 450 — 500°C are absent.



CHAPTER 6
Relaxation Via Twinning in Si-Ge Compressively Strained Layers

It is well known that the relaxation of strain in Si—Ge layers
deposited on a Si{100) substrate is typically achieved via the nucleation and
propagation of 60° %(110) misfit dislocations. The relief of compressive strain
in the deposit by means of partial dislocations and associated stacking faults
or by means of twinning has been considered to be unlikely because this
would require the independent activity of 30° %(211) dislocations
(Marée et al. 1987). Indeed, although stacking faults and twins have been
reported in Si-Ge layers deposited on Ge(100) (Wegscheider ef ol 1989;
Woegscheider ef al. 1990; Wegscheider et ol. 1991), there has to date been no
report of these types of defects in the case of similar deposits on $i(100)
except in relief of high stress concentrations in the vicinity of growth defects
(LeGoues, Copel, and Tromp 1990). In the present work it is shown that
under certain circumstances the relaxation of Si—Ge superlattices deposited on
Si(100) may in fact proceed by means of twinning, accompanied by the

growth of a diamond-hexagonal phase.
An S—period strained layer superlattice consisting of 7.0 monolayers of

Ge alternating with 17.5 monolayers of Si was grown in a Vacuum

Generators V80 MBE system as described in the experimental procedure. A

109
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cross—sectional micrograph of the as—grown material is shown in fig. 6.1. It
may be seen that the growth surface has become non-planar even after the
deposit of the first 7 monolayers of Ge. This is a result of the transition
from Volmer—Weber to Stranski-Krastonov growth, which for Ge deposited on
Si(100) has been found to take place after 3—! monolayers (Asai, Ueba, and
Tatsuyama 1985; Mo et ol 1990; Williams et al. 1991). The subscquent
growth of the superlattice is accompanied by the development of gross
perturbations at the surface, so that any resemblance to an ideal
two—dimensional structure is very quickly lost, and a complicated stress field
is set up within the epilayer. This accounts for the uneven contrast in
fig. 6.2, which shows a plan view of the as—grown state imaged using

g = 022 and the deviation parameter s ¥ 0.

Selected area diffraction patterns provide f{urther information
concerning the nature of the'superlattice. A 1100] diffraction pattern of the
as—grown material is shown in fig. 6.3. In addition to the expected diamond
cubic matrix reflections, there is a fairly intense set of rings which are due to
the presence of amorphous material, as well as four faint spots lying on the
{111} amorphous silicon ring. These result from the presence of two variants
of the diamond hexagonal phase, one of which is imaged in fig. 6.4 using the
(0002)4,, reflection. This phase has a = 3.86 A and ¢ = 6.31 A, giving
dggo; = 3-16 A (Pirouz et ol 1990a). The phase exists as randomly placed
clusters of atoms approximately 50 A in diameter. Tilting along the
022 Kikuchi band to the [411] zone axis produced the diffraction pattern
shown in fig. 6.5. Besides the matrix reflections, the rings, and the faint

spots arising from the diamond hexagonal phase, there is a set of spots which
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Figure 6.1: Cross-sectional micrograph of (Si;7.5Ges.o)s superlattice in the
as-grown state. g = 400 bright field, s>>0.
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Figure 6.2: Plan view micrograph of (Siy7.5Ger.q)s superlattice in the
as—grown state. g = 022 bright field, s 2 0.
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Figure 6.3: [100] diffraction pattern of as—grown (Sij7.sGer.q)s superlattice. A
0002)4n reflection is marked by an arrow.
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Figure 6.4: Diamond hexagonal phase in as—grown (Si1r.5Ger.0)s superlattice.
g = 0002,
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Figure 6.5: [411] diffraction pattern of as—grown (Siz.sGer.o)s superlattice. A
twin reflection is arrowed.
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are due to the presence of one of four Lwin variants which exist in this
sample. This is the variant lying on the (111) plane; applying the indicial
transformation between matrix and twin (Hirsch et al. 1977) shows that the
[411] matrix zome axis coincides with the [110] zone axis for (111) twins.
Although the twins are very thin, having a rod-like diffracted intensity
distribution in reciprocal space, they are oriented in such a way that this
distribution intersects the Ewald sphere to give essentially a spot in the
diffraction pattern. An image of the twins using one of the twin reflections
from the [411] matrix zone axis is shown in fig. 6.6. As with the diamond
hexagonal phase, the twins are very small, but they are more numerous than

the diamond hexagonal clusters, and appear in a range of sizes.

Annealing at 700°C brought about a rapid increase in the size of both
the twins and the diamond hexagonal phase. This may be seen for the twins
in figs. 6.7-6.9 and for the diamond hexagonal phase in figs. 6.10 and 6.11.
The micrographs in figs. 6.7-6.9 actually show the presence of two twin
variants, for these images were taken by placing the objective aperture around
two closely spaced {115} reflections on the 040 Kikuchi band approximately
11° away from the [100] zone axis. At this orientation these twin reciprocal
lattice points are in contact with the Ewald sphere. Thus twins lying on
orthogonal {111} planes may be seen. Variations in the thickness of the
twins gives rise to a range of intensity in their images. At 700°C, the
greatest amount of growth occurred between O and 20 seconds. After this
period, both the twins and the diamond hexagonal phase continued to grow,
but at a slower rate. Cross-sectional TEM images of a specimen annealed for

2000 s at 700°C showing the presence of twins appear in fig. 6.12. The
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Figure 6.6: {111} twins in as—grown (Si,7.;Gey.o)s superlattice.
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Figure 6.7: {lll}c twins in (Siy;.;Ger.o)s superlattice annealed 20 s at
700" C.
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Figure 6.8: {111} twins in (Si;;.sGer.o)s superlattice annealed 2000 s at
700* C.
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Figure 6.9: {111} twins in (Sij7.5Ges.q)s superlattice annealed 300 s at
800° C.
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Figure 6.10: Diamond hexagonal phase in (Sij7.sGes.q)s superlattice annealed
200 s at 700° C. g = 00024,
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Figure 6.11: Diamond hexagonal phase in (Siy;.sGer.o)s superlatiice annealed
300 s at 800° C. g = 00024,



.25 nm__

Figure 6.12: Cross-sectional micrograph of {111} twins in (Siy7.sGerg)s
superlattice annealed 2000 s at 700° C. g = 400 bright field,
s>>0.
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Figure 6.13: Plan view micrograph showing Moiré fringes from (Sii7.5Ges.q)s
superlattice annealed 20 s at 700° C. g = 022 bright ficld,
s & Q.
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formation of twins is accompanied by the relaxation of the epilayer, as may
be seen by the Moi:z$ fringes imaged using g = 022 and s & 0 in fig. 6.13,
which is a plan view of material annealed for 20 s at 700°C. Since the
strain in the epilayer is not homogeneous, the fringes take on 2 rippled
appearance.

Diffraction patterns also reflect the microstructural evolution of the
superlattice.  These are shown in figs. 6.14—€.17.  While the as—grown
material produces only faint (0002)y, reflections, the (0002)y, reflections
present in the [100] diffraction patterns in figs. 6.14 and 6.15 are quite
pronounced. Twinning reflections streaked in (110) directions may also be
observed in figs. 6.14 and 6.15. The reciprocal lattice points associated with
the twin reflections do not actuvally lie in the zero order Lauve zomne; their
appearance is due to the local buckling of the foil (Hirsch et el 1977).
Diamond hexagonal reflections are also present in figs. 6.16 and 6.17, which
show [411} diffraction patterﬁs of annealed material. The pattern of fig. 6.17

is quite intricate because of streaking and double diffraction effects.

The growth of a superlattice in which 7 monolayers of pure Ge is
periodically deposited on Si leads quickly to the development of a non—planar
growth front. This creates interpenetrating layers of Si and Ge in which local
values of the stress can be very high. According to linear elasticity theory, a
planar deposit of Ge on Si(100) gives rise to a biaxial compressive stress of
6.8 GPa, or approximately /10, where p is the shear modulus of silicon. If
the deposit becomes non—planar then stress concentration effects can raise this

to even greater levels. These large stresses are sufficient to nucleate and
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Figure 6.14: [100] diffraction pattern of (Siy7.sGer.q)s superlatiice annealed
300 5 at 800° C. A twin reflection is marked by arrow A and
a (0002)qn reflection is marked by arrow B.
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Figure 6.15: [100] diffraction pattern of (Sij7.sGey.o)s superlattice annealed
200 s at 700" C. A twin reflection is marked by arrow A and
a (0002)an reflection is marked by arrow B.
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Figure 6.16: [411] diffraction pattern of (Sij7.sGes.o)s superlattice annealed
20 s at 700* C.
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Figure 6.17:

[411] diffraction pattern of (Si7.5Ger.q)s superlattice annealed at
2000 s at 700" C.
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stablize very small twins on {111} planes. The twins act to relieve stress

concentrations and lower the elastic energy of the as—grown material.

It is possible to generate twins through the motion of either 90° or
30° %(211) partial dislocations on successive {111} planes. However, the
motion of 90° partials can only relieve an epilayer which is under a net
tensile strain, for their motion towards the substrate in an epilayer which is
in compression gives rise to a high energy stacking sequence
(Marée et ol 1987). Thus the twins in this material are bounded by 30°
partials, although this is not as efficient a means of relieving the net
compressive strain in the superlattice as 90° partials would be. Annealing the
sample at 700°C results in interdiffusion accompanied by a growth of the
twins which is initially rapid, and then slows. Once an appreciable amount
of interdiffusion has taken place, the twins no longer act to relieve local stress
concentrations, and serve onlf to relieve strain in the epilayer. The extent of
this strain relief by the twins is sufficient to prevent the introduction of 60°
%(110) misfit dislocations to the substrate/epilayer interface. It is interesting
that 4 twin variants were found to relieve misfit strain in this superlattice
even though only 2 orthogoral variants are geometrically necessary in order to
achieve the full relief of biaxial strain. This is analogous to the case of the
relief of biaxial strain via 60° %(110) dislocations, which may take place with
dislocations having either a similar or an alternating orientation. Here the
array of 30° partials bounding the twins has essentially an alternating

orientation.

The existence of the diamond hexagonal phase in silicon having
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(011),, || (0001),, is now well documented (Eremenko and Nikitenko 1972

de
Pirouz et al. 1990a; Dahmen ef al. 1990; Pirouz et al. 1990b; Cerva 1991). A
similar phase has also been found in germanium (Xiao and Pirouz 1992).
Two mechanisms for the formation of this phase have been proposed. The
first is the creation of the hexagonal phase at twin intersections. Such
intersections result (Pirouz et al. 1990a; Xiao and Pirouz 1992) in a highly
strained region which can undergo a martensitic transformation to the
hexagonal phase in which the habit plane between the hexagoral and cubic
phases is {511}4. and (011)4, || (0001)4y, [011}4, || {1210]4,. The second, also
giving rise to the same habit plane and orientation relationship

(Pirouz et al. 1990a; Xiao and Pirouz 1992), is the propagation of secondary

twins into the diamond cubic matrix.

In the present case it seems probable that the diamond hexagonal
phase observed is a result of the intersection of twin platelets. It is clear
that the intersection of twins is a likely occurrence, while the generation of
secondary twins is not so obvious a prospect. Rather than disappear on
annealing, the diamond hexagonal phase increases in quantity. This can be
explained as a byproduct of the relaxation of the superlattice via the
formation of twins — as the extent of twinning increases, so does the number

of intersecting twins and therefore the volume fraction of the hexagonal phase.



CHAPTER 7
The Pagoda Delect

The goal of crystal growth techniques such as MBE in the strained
layer epitaxy of Si,..Ge,/Si films is to produce strained layers of the Ge-rich
phase free of defects with abrupt, step—iree interfaces separating the layers. In
practice this has proven to be a difficult task. Here the role of the substrate
in controlling the perfection of the growing layers in MBE grown Si-Ge
structures and the introduction of a growth defect known as the "pagoda

defect" (Perovic, Weatherly, Baribeau, and Houghton 1989) is examined.

Two Si,..Ge,/Si strained layer superlattices were grown by MBE and
prepared for TEM examination as described in the experimental procedure.
Pagoda defects in these samples were imaged under a number of diffracting
conditions. Typical pagodas in the material having the lower Ge concentration
in the alloy layer are shown in fig. 7.1. This image was recorded using
g = 400 with the deviation parameter s ¥ 0; a number of pagodas appear,
each being a line of small lobes protruding from the Sig.76Geq-24/Si interfaces
pointing back to the substrate. They all lie parallellto one another, running
in a direction somewhat off [100). The pagodas had an identical appearance
when imaged using g = 200, that is, the nature of the image was unchanged

on reversing the sign of g. When the sample was tilted so that s took on a

132
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Figure 7.1: Contrast from pagodas in a 20—period Sio.76Geg.24/Si superlattice,
g = 400, s # 0.
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value appreciably different from zero, the pagodas véry quickly disappeared -
images of these defects in this sample were present only when s ¥ 0. On
imaging the pagodas using g = 022, again with s ¢ 0, the image of the
defects took the form of lines of arrows (chevrons) pointing toward the
substrate as shown in fig. 7.2. Again, if the sign of g was reversed, the

appearance of the defects remained unchanged.

The effective line direction of the pagoda defects was determined by a
standard trace analysis technique. In this foil they were found to follow the

[520] direction, which is about 22° from the [100] substrate normal.

Pagodas from material having an alloy layer composition of
Sig.g5Geg.35 gave rise to contrast behaviour which differed from that of the
Sig.76Geq.24 material in several respects. Images of pagoda defects in
Sig.65Geg.35/Si were always p.resent no matter what the diffracting conditions:
two—beam with s @ 0, two-beam with large values of s, or many-beam
diffraction. On imaging with g = 400, pagodas took the appearance shown in
figs. 7.3 and 7.4. In fig. 7.3, taken using g = 400 and s 2 0, the defects
again appear as bulges at Sig.s5Geq.35/S1 interfaces which extend about 300 A
into the Si layers. Also visible are strain contrast effects, associated with the
presence of the defects, in the Si layers themselves. In fig. 7.4 the diffracting
condition was g = 400, with s taking on a relatively large positive value.
Pagoda defects are again visible, but the associated strain contrast in the Si
layers is no longer present. As before, if the sign of g was reversed for a
given s, the image of the pagoda defects remained unchanged. The pagodas

took on a completely different appearance on tilting to a beam direction
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Figure 7.2: Chevron contrast from a 20-period Sig.75Geg.24/Si superlattice,
g=2022,5%0
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Figure 7.3: Contrast from pagodas in a 20-period Sig.ssGeo.as superiattice.
g = 400, s ¥ 0 — both structure factor and strain field contrast

are visible.
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200 nm

Figure 7.4: Contrast from pagodas in a 20-period Si;.ssGeq.3s superlattice.
g = 400, s>>0 — only structure factor contrast comtributes to
the image.
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approximately 10° away from the [0I1] zone axis. f‘igure 7.5 shows pagoda
images with the 133 Kikuchi band symmetrically disposed about the
transmitted beam at a tilt angle of 10°. In effect this is a many-beam image.
There is a marked change in the contrast features of a pagoda on moving
from one end of an array to the other; this change is common to all of the
pagodas in the micrograph. The sense of this contrast may be changed by
tilting 10° away from the [0T1] zone axis in the opposite direction while
keeping the 133 Kikuchi band symmetrically disposed about the transmitted
beam, as shown in fig. 7.6. Pagoda defects imapged wusing g = 400
{(or g = 400) in regions of the foil which were very thin took the form of a

bend in the Sig.ssGeo.3s/Si interface (see fig. 7.7).

Pagodas in this foil were found to follow the direction {13 5 2], about
22.5° from the [100] surface normal. In this particular sample the substrate
was rotated during the growth of the buffer layer (including the B—doped
delta layer), but there was no rotation during the alloy layer growth. Both
the B—doped layer (visible as a faint rippled line midway between the
substrate/buffer layer interface and the first alloy layer) and the alloy layers
act as markers of the growth front morphology. The perturbations or "ripples”
in the B—doped layer lie directly above particles at the substrate/buffer layer
interface (fig. 7.8). Once growth of the alloy layers commenced (without
substrate rotation) the defects grew in a direction determined by the 3i source

flux (see below).

The pagodas are visible through structure factor and strain field

contrast effects, both of which depend on the Ge content in the alloy layers.



Figure 7.5:
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300 nm

Contrast from pagodas in a 20-period Sio.s5Geq.3s superlattice
with g = 133 and 133 equally excited. .
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Figure 7.6: Contrast from pagodas in a 20-period Sio.ssGeo.3s superlattice

with g = 133 and 133 equally excited. Complement of figure
7.5.
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Figure 7.7: Thin region of a 20-period Sio.¢5Geo.3s/Si superlattice; g = 400,
showing bending of strained layers.



Figure 7.8:
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Sig.ssGep.3s/Si superlattice; g = 400, showing the correlation
between the position of thin SiC particles at the original
substrate, the B-doped layer (arrowed), and the pagodas in the
first few strained layers.
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The factors which control the contrast in cross—sectional samples of perfect,
planar strained layers in this system have been discussed in a recent paper by
Perovic, Weatherly and Houghton (1991). Strain—field contrast arises from
surface relaxation of the built-in strains of the bulk sample, while structure
factor contrast is associated with the difference in scattering factors of Ge and

Si and local displacements of Si atoms (in the strained layer).

In the cross—sectional samples the contrast from the pagodas arises
both from structure factor and strain effects. Images of defects in the sample
having the higher Ge concentration in the strained layers provide sufficient
information to determine cleerly the structural characteristics of pagodas. A
consideration of the images presented in figs. 7.3-7.7 reveals their true
morphology. They consist of a series of rounded conical perturbations in
successive Si,Ge./Si interlayers — these are the lobes which are seen in all
the images. The perturbation involves a shift of both the Si and Si, Ge,
interfaces toward the substrate in which, as shown in fig. 7.8, the thickness of
both layers remains essentially constant. The shift is greatest at the centre of
a cone and tapers off until the surrounding flat regions of the layers are
reached. When a cross—sectional foil is viewed with g = 400, one sees either a
section taken through an individual cone (e.g. fig. 7.7, which comes from a
very thin region) or a section that includes all or part of a cone together
with the surrounding planar layer (in thicker foils, see e.g. fig. 7.3). When a
cross—sectional foil of the material having the higher Ge content in the alloy
layers is viewed under weakly diffracting conditions such as in figs. 7.5 and
7.6, the image is free of strain effects. The contrast observed is due to

structure factor differences throughout the material, which in this case gives
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rise to images of layers distorted in the form of solid conical bulges. The
change in the contrast featvres on moving from one end of the pagoda to the
other may be explained by the fact that the electron beam samples different
columns of material depending on whether a lobe of a pagoda sits near the
top or the bottom of the foil. The contrast inversion found on tilting along
the 133 Kikuchi band in opposite directions from the [0T1] zone axis is due to
an inversion in the nature of the column of material associated with a lobe of
a pagoda traversed by the electron, as shown in fig. 7.9. In effect this is a
manifestation of the reciprocity theorem for electron diffraction (Pogany and
Turner 1968). Since in unrotated samples the direction followed by a pagoda
defect has a significant component perpendicular to the plane of the foil, the
sectioning of the thin TEM foil causes the apparent size of the defect to wax
or wane, giving the characteristic pagoda-like image seen in several of the
micrographs. In the cross—sectional samples having the lower Ge content,
pagodas are visible only when s ¥ 0 because the strain effect and variations
in the structure factor are too small for pagodas to be visible under weakly
diffracting conditions. Simple lobes are present in fig. 7.1 (g = 400), while
chevron—type contrast is observed in fig. 7.2 (g = 022). The differences in the
two images are due to the shorter extinction distance of the 022 reflection
and the fact that (400) and (022) planes undergo different deformations in the
presence of pagoda defects. The contrast in both images also shows the effect
of surface relaxation — individual lobes of the pagoda which lie closer to the
surface (but not so close that part of the lobe is missing from the foil) give

rise to wider images than lobes which lie in the centre of the foil.

Pagodas always point back to the substrate, and in samples with a
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Figure 7.9: Diagram illustrating the origin of the contrast inversion found in
a pagoda on tilting along the 133 Kikuchi band in opposite

directions from the [0T1] zome axis. Directions A and B
correspond to opposite senses of a 10° {tilt.
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very thin buffer layer between the substrate and the first strained layer, the
origin of the cones can be correlated with particles left at the substrate after
cleaning. These are probably @-SiC particles {(Perovic et ol 1989). The
formation of the cones at SiC particles is related to a low sticking coefficient
for Si on SiC and a pinning effect of the particles on step or two—dimensional
island growth. When silicon is first deposited on the substrate, it must be
repelled by the SiC particles, so that the surface of a particle remains {ree of
silicon (fig. 7.10(a)). As growth proceeds, silicon continues to be repelled by
the surface of a particle, and a pit is formed in the region above a particle,
as shown in fig. 7.10(b). Silicon finally covers the surface of the SiC
precipitate (fig. 7.10{c)), leaving a pronounced conical depression there. A
number of studies (Cullis and Booker 1971; Henderson, Marcus, and Polito
1971; Robbins et ol 1987; Pidduck et el 1989) have shown that SiC particles
can impede the flow of steps both during the growth and dissolution of
Si(100) or Si(111) in vapour transport processes. At high temperatures (e.g. at
850°C using silane as the Si source), the formation of surface pits is observed
to be a transient process, and after about 200 nm deposition at this
temperature the pits are overgrown, leaving a smooth  surface
(Pidduck et al. 1989). In this study, conducted at much lower growth
temperatures, this healing process is negligibly slow and the cone or pit
structure can propagate with an essentially fixed morphology for several

microns of deposition.

In a given area of a thin foil the pagodas always run in the same
direction, although this varies from sample to sample or from different areas

of the same substrate. In unrotated samples, the direction of the pagoda



147

Si Source

I

]

{d) X-Sectian View //// l!// ;;
—
S, Ge,”
Layers
~

Figure 7.10: Diagram illusirating the stages involved in the formation of a
depression at the location of a SiC particle in a growing
surface.
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appears to line up approximately with the angle made by the Si source with
the substrate normal. It is assumed that as the Si source is always operating
during growth, it is this source and not the Ge source which determines the
overall direction of pit or cone growth. The Ge source acts principally as a
marker which periodically decorates the surface morphology during growth. A
very simple model can be used to describe the growth process. The overall
(100) growth front is maintained by the familiar step or two—dimensional
island growth process over the majority of the flat surface area, as
documented in a number of recent scanning tunneling microscopy studies
(Hamers, Tromp, and Demuth 1987; Hoeven et al 1990; Legally et ol 1990).
The pits or cones see the same flux as the rest of the surface, but grow in a
direction which is determined by the line of sight to the Si source. The pit
morphology and growth direction is governed by the condition that each point

on the face of the pit grows at a rate determined by the flux at that point.

This is illustrated in fig. 7.10(d). If each element on the surface
moves towards the source at a rate equal to the product of the volume of
each particle and the flux impinging on each surface element, the surface as a
whole moves upward uniformly and its shape is preserved (fig. 7.10). At first
sight this is a surprising result, since scanning tunneling microscopy provides
strong support for a step or two—dimensional island growth mode on Si(100)
in this temperature range. If the shape of the pit was controlled by step
migration, the morphology would change during growth (Frank 1958).
However, we also know from other studies (Jorke, Herzog, and Kibbel 1989;
Eaglesham, Gossman, and Cerullo 1990; - Perovic ef al 1991) that at the

relatively fast growth rates of MBE (approximately one monolayer per
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second), the (100) step or island growth process is only marginally stable at
these temperatures (400-500°C). Dropping the temperature significantly below
400°C leads to a morphological breakdcwn and the eventual formation of an
amorphous film. The temperature range of 400-500°C clearly lies in a growth
regime where (at least in MBE) a step or island growth process can coexist
with one where there is no crystallographic influence imposed by the
substrate. Thus flat regions of (100) oriented growth can be found adjacent to
smoothly curved pits with no observed faceting. This is possible only if

diffusion over the surface is very limited in extent.



CHAPTER 8
Summary and Conclusions

It has been found that the dislocation self energy and the
dislocation—dislocation interaction energy as well as the dislocation-epilayer
interaction energy in a strained epitaxial layer may all be obtained from the
stress field of a single dislocation in a half-space. A knowledge of the slip
system and the core energy of the dislocation allow for a precise
determination of the core parameter ¢ Calculations indicate that the
equilibrium dislocation spacing in two-dimensional orthogonal arrays in Si-Ge
systems decreases very rapidly at thicknesses just greater than the critical
thickness. Sixty degree dislocations lying on {111} planes on a Si(100)
substrate approach the equilibrium spacing Q%T (as the film thickness h - o)
most rapidly when they are arranged such that their screw components can
form a twist boundary. This array of dislocations also has a lower energy (at
its equilibrium spacing) than the corresponding array of alternating
dislocations. The same method uvsed to determine the energetics of dislocations
in strained epitaxial layers can be used to find the energies of various low

angle grain boundaries lying parallel to the free surface in a semi-infinite

solid.

The growth of short period superlattices by MBE at 400°C is marked
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by the development of non-planar layers even at Ge thicknesses as low as 2.0
monolayers. Non-planar growth leads to points of localized stress
concentration which act as dislocation sources. These sources lead to
considerable dislocation activity on annealing for short times in the
temperature range 450-500°C. Homogeneous epilayers having effective stresses
similar to those in short period superlattices relax much more slowly due to

the absence of large numbers of low activation energy dislocation sources.

An 8—period superlattice consisting of 7.0 monolayers of Ge alternating
with 17.5 monolayers of Si grown by MBE was found to relax through
twinning on {111} planes, accompanied by the formation of a diamond
hexagonal phase in which (110),, || (0001)gy. No 60* 5(110) dislocations were
introduced to the strained layer structure during annealing. This behaviour

was caused by the non-planar nature of the as—grown layers.

Perturbation of the (100) growth front during Si-Ge MBE growth
leads to the formation of the pagoda defect at the strained layers. The defect
is associated with the role of SiC particles at the original substrate surface,
which disrupt the step or two-dimensional island growth process and introduce
pits at the growth fromt. In unrotated samples these pits propagate toward
the Si source, so the pagodas line up at a shallow angle (approximately 20')
to the [100] normal. The pagodas are visible in TEM images both by
structure factor and strain contrast, but for most experimental situations

structure factor contrast makes the major contribution to the image.



Appendix

A) Self Energy Integral — Burgers Vector Parallel to the Free Surface

b 1 4hXQ—x')
Ud'1=rlf'1—7J'—"dX2+J—~f—-—-f§dX2
" L -u[ X2 rﬂ(xz + 4h)

1]
_J 48114}{2 - 4h2x: dx

) I 2| + Ucore, h>ry,
(x2 +4b )

Ig

where partial fraction decomposition gives

2 3 2
J4hxe—xz dJC2=J 8h x dm_J X2 _ dx,
(x2 + 4h') (x3 + 4h)

and
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J (xg + 4112)3 (x2 + 4b') (xz + 4h)

The integrals in decomposed form may be found from standard tables

(Beyer 1978), giving
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B) Dislocation - Epilayer Interaction Energy Integrals

12} w
The integrals J oudx; and J oaadx; determine  the
- -

dislocation—epilayer interaction energy for a dislocation lying parallel to the x;

axis.
i) Burgers Vector Parallel to the Free Surface

a) J ondx;

-m

Each of the three terms which make up oy is integrated separately.

By partial fraction decomposition,
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f Ceoth)((xth)” - xa) g [ (x1+0) s )]“’ =0,
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Thus J ondxz = 0, so that o = 0, as was stated in section 3.1.5.
-
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Each of the terms making up o3; is integrated separately. By partial

fraction decomposition,
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14
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ii) Burgers vector perpendicular to the free surface
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C} Dislocation—Dislocation Interaction Energy Integrals

i} Burgers Vector Parallel to the Free Surface

2 @ 2 3 4 23
Ud - = b_u}’ [1 + 4h X9 — X2 48h X9 — 4h X dx;, d>2ru

X2 (xg4+4h')" (xz+4h ')’

1

- e - [t ¢ [ ao]

2 2 3 .13 4
_ b’ [dtean’y | 120 d ti6h i 210
4”(1“’)[ d’ ) (d'+4n")" ]’

ii) Burgers Vector Perpendicular to the Free Surface
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Making use of these integrals gives, after some algebra,
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D) Infinite Series and Products
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Use is made of the following infinite series and products (Hansen 1975) in

arriving at closed form expressions for dislocation—dislocation interaction

energies:
2
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