Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8661
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSnaith, V.en_US
dc.contributor.authorMcCudden, Brianen_US
dc.date.accessioned2014-06-18T16:43:36Z-
dc.date.available2014-06-18T16:43:36Z-
dc.date.created2011-01-18en_US
dc.date.issued1992-07en_US
dc.identifier.otheropendissertations/3848en_US
dc.identifier.other4865en_US
dc.identifier.other1732986en_US
dc.identifier.urihttp://hdl.handle.net/11375/8661-
dc.description.abstract<p>This paper demonstrates an application of Explicit Brauer Induction. Snaith (28), introduced this canonical form for Brauer's induction theorem. An overview of this development is given in chapter one with a new proof of Brauer's theorem. In (29-35) Snaith applied Explicit Brauer Induction, primarily in the construction of invariants of representations of finite groups from invariants of one-dimensional characters. Following (28, 29, 30) Chapter two presents proof that the Grothendieck group R₊(G,S¹) is a ring with properties of induction, restriction, inflation, and Frobenius reciprocity. There exists a ring homomorphism b:R₊(G,S¹) → R(G) which was introduced as a footnote in (26, P. 71). We discuss the map T_G, (30 Pp. 454-469), which is a section to b. Deligne (6, Pp. 501-597) has devised generators for Ker b, in the case for G solvable. We examine the case G = D₈. Boltje (1, 2) has devised another section to the map b, termed a_G. This development and examples are given in Chapter three. In Chapter four, conjugacy classes and character values, for the matrix group GL₂F_q are reviewed for all irreducible representations including the cuspidal case (13, Pp. 122). The main result of this paper is contained in Chapter five. We develop the Explicit Brauer Induction formula for a_G(ρ) where G = GL₂F_q and ρ is an irreducible representation of G. This development is used to describe Shintani descent between the irreducible representations of GL₂Fⁿ_q and the irreducible representations of GL₂F_q. The original derivation of Shintani descent (27, Pp. 396-414), uses norms on character values. In the construction given here, the Shintani norm is not used, but rather, the correspondence is obtained by applying Hilbert Theorem 90 to the maximal one dimensional characters which appear in the expression for a_G(ρ).</p>en_US
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleExplicit Brauer Induction and Shintani descenten_US
dc.typethesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.88 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue