Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8522
Title: Fourier Transforms of Lipschitz Functions on Compact Groups
Authors: Younis, Muhammad S.
Advisor: Stewart, James D.
Department: Mathematics
Keywords: Mathematics;Mathematics
Publication Date: Aug-1974
Abstract: <p>If a function f is in LP(G), where 1 < p ≤ 2 and G is a locally compact abelian group, it is well-known that the Fourier transform f of f lies in L^q(r), where 1/p + 1/q = 1 and r is the dual group of G. This thesis is concerned with how this fact can be strengthened if it is known that f satisfies a Lipschitz condition. For certain kinds of compact groups (the circle and a-dimensional groups) we prove that if f is in Lip(α;p) then f lies in Lᵝ(r) for β > p/(p+αp-1), and a similar result holds for the n-dimensional torus. These results are generalizations and analogues of classical theorems of Bernstein and Titchmarsh about Fourier series and integrals. Furthermore we obtain more precise information for the case p = 2.</p>
URI: http://hdl.handle.net/11375/8522
Identifier: opendissertations/3721
4738
1704944
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.8 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue