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a 1dZa}Ty compact abelian group, it is wg]]—known that the Fourier transform.
_ f of f lies in LY(r), where 1/p + 1/q = l’and I' is the dual group of G. This

thesis is concerned with how this fact can be strengthened if it is known

gy

that f satisfies a Lipschitz condition. For certain kinds of compact groups i
’ (the circle “and O-dimensiona{ groups) we prove that if f_if in Lip(a;p) |
%hen % lies in LB(F) for 8 > p/(p+ap-1), and a similar result holds for the
n-dimensional torus. Thése resu1£s are generalizations and analogues of
classical theorems of Bernstein and Titchmarsh about Fourier series and

integrals. Futthermore we obtain more precise information for the case

p =2,
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\\ INTRODUCTION * - ' .

A

&
' . y 4

The purpose of the present work is to étudy the Fourier

! éi transforms of Funct1ons that sat1sfy L1psch1tz cond1ﬂ1ons of certaxn
bt orders. Thus we study the Four1er transforms of Lipschitz function in the
o '
5 functions SpaceLP(G) F<p < 2, where G‘lS a compact group whlch

" will be specified in due course.

Odr investigation into the p}oblem was motivated by two theorems
proved by Titéhmarsh (25, Theorem 84, 85] for Lipschitz functions on the
real line. The princ{pa1 result of those two theorems ds that if f
beTongs to LP{R), 1< p ¢ 2, and also belongs to Lip{asp), i.e., g@f
, - &
|[f(x+h) - f(x)llp = 0(h%) ‘ - ‘

r

as h approaches zero, 0 < x ¢ T, then thefFourier transform fof f belongs

Ay

to LB(R) for
p/(p + ap - 1) < 8 5 q_= p/p-1 . .

In [29], this theorem was studied for higher differences and for
--several variables as well. Ultimately wglwou1d like to prove results . .
similar to those of Titchmarsh on any locally compact abelian group for
which tﬁe concept pf'Ligfchitz conditibns makes sense (in particulaf on
metric groups): However, in this work Titchmarsh's res 1ts are examined
E:\and for compact

" for the circle group T, for the n dimensional torus, T

metrizable O-dimensional groups.

There are three chapters in the thesis. Chapter 1 starts with




-
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a brief historical iniroduction_in which'we trace Lipschitz conditions

back to their origin, The chapter proceéds with some basic facts'%bout
the modulus of continuity and Lipschitz conditions. Although this material
is, for the most part, e]emeﬁtary, we have included some proofé for the-
sake of'comp%eteness of exposition. There does not seem to be agz\pook
] . : . .

or monograph devoted to a systqpétic exposition of Lipschitz functions,

Some of the theorems are probably well known'éo workers .in ~the field, bﬁt

\
we have not seen thgm in print. The chapteﬁ closes with some applications

of Lipschitz functions in several areas of analysis.
In chapter two we prove the analogue of Titchmarsh's Theorems

‘ |

84,%5 for the circle group T; and deduce the classical Bernstein theorem

{2} as well as the more general theorem of Szasz [23] from the main result of
chapter which asserts that if f belongs to LP(T)ALip(a;p), then the
sequence of its Fourier CToefficients {?(n)} belongs to 25, wﬁere as B énd ’

p are as above.

There are several new results in this chapter including theorems for
higher differencés and for functions of several variables. For more than one
variabile the situation depends heavily 0;1 just which defi’nition of
Lipschitz functions is employed. With the usual definition of Lip(a;p) for
T" the conclusion is that

h. . .
g > —PB . 4 ‘2
p+ %— p-1

+
However if the multiplicative definition of Lipschitz functjons is used,

o

L)

then the conclusion can be strengthened to read

-~

(vi)
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R > E_;E—p—_f . . - ,
. ‘ X
The last section of this chapter deals with the special case
where f is in L2(T) and 0 < a< 1. It turns out in this case that the
results can-be put in a reversible form (which is the analogue of
Titchmarsh's theorem 85).

“ Chapter three is devoted to the study of Fourier transforms of leysc}tité

functions on compact metrizable 0- dimensional groups. In 3.1 we

collect some basic material on”harmonic analysis on groups for further

reference. Sectipn 3.2 deals mainly with the gtructure of compact gT
metrizable O-dimensional groups; the latter part-of it is an elaboration of RL@
the relevantparts of Walker's paper [27a] on Lipschitz classes on 0- \'4
dimensional groups. ’

In 3.3 we combine the teﬁhniqués of Walker with those of Titchmarsh.
tb prove for compact meirizab]e O-dimensional groups the analogues of the
above mentioned ;heorems 6f Titchmarsh, Namely we prove that if f belongs
to Lp(G) and is in Lip(x;p), then the Fougier transform f belongs to LB(F),
where I is the dual group of G. As in chapter two, this chapter concludes
by examining the special case of Lipschitz functions in LZ(G). '

A It should be mentioned that a]fhough the condition on the

exponent in those theorems? is formulated as

R N
p¥ap-1  ° B s q-

N

[y

in order to make the analogy with Titchmarsh's theorems clear, we could

Just as well have written

(vii)
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is contained in.yY for 8 < y.
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CHAPTER I

LIPSCHITZ SPACES

D /\

1.1 Historical Remarks
Since the main purpose of the presgnt work is to stﬁdy the
Fourier transforms of functions which satisfy Lipschitz conditions,

it would be ‘convenient to give in this chapter a general survey of

Lipschitz classes available in the literature. 0
Lipschitz classes have been constantly employed in Fourier ﬁiﬁ.

analysis, although they appear. in the realm of trigonometric series ﬁ%i%n

more than they occur in Fourier transforms. ﬂ%i&k

On historjca1 grounds it is significant to observe that
Lipschitz conditions ha;e their genesis in connection with the idea of
representing a function by its Four%er series. _

In 1864, R.'Lipschitz proved the following result. (We quote from
Lipschitz [14] in the translation of Manheim [16, p.62-63]).

"We designate by g and h quantities satisfying the inequa]ities

0s g<hsgsa , - '
2

and [we] let f(2) be a function which, in the interval (g,h) remains

bounded between the positive and negative values of a constant; [we

require] -that the differente

- f(gqts) - f(g)
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-

.

approaches zero with § [and] that the difference

. N
f(s+s)y .- f(8), for g < &8 < h
have an absolute value tess than the product of a constant by an
arbitrary positive power of §; then the integral ' ‘ .
[ 4
h
f(8)sinks ds m
sing 875
x’,i'
9 B
LN
has,a limit when k is increased indefinitely. The Timit is zero if ﬁggg
AN
H__&g
g is positive and = #(0) if g is zero". L ™,
2 - . .
The last portion of the hypothesis before the conclusion was
meant to say that
[ F(3+s) - f(8)] o A ST, (1)
where A is constant and o - 0, which is what we know now as a Lipschitz
condition. | _ j
Dirichlet, in Crelle's Journal for 1828, provedethe following theorem
(Boyer [3, p.600]).
If f(x) is 2n-periodic, if for -n < x « - f(x) has a finite number of
x
maximum and minimum values and a finite number of Wiscontinuities, and .
if - /
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v . .
[f(x)dx N ' -

i§ finite, then the Fourier series converges to f(x) at a11rﬁbints

where f(x) is continuous, and at jump-points it converges to the

" arithmetic mean of the righi-hand and left-hand -1imits of the function.

Lipschitz - using his theorem which we have already mentioned -
was able to improve Dirichlet's theorem by proving the following theorem #Qiik
concerning the representation by Fourier series of a .function with an

infinite number of maxima and minima (Lipschitz [14, p.307-308]).

-3

"[The Fourier series for a function ¢(x)] is convergent and

always has

g

s

Lle(x-e) + o(xte)]

for its sum, «¢ Being an arbitrary'small quqntity, for all x in the
interval (-n,n) when thF function presents its oscillations for certain
particular values of the variable and even in every cése, with one
exception, where the function presents its oscillationg in certain
finite segments of the total interval. This exception occurs when in a

s

finite segment, although the difference , '

o(x+8) - o{x) approaches zero'with Sy

the difference diminishes in such a way that one can never find a - .
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positive power of '§ which remains superior to [the difference] for
all values of the variable contained in the segment. This evidently

-

occurs if ¢(x+§) - ¢(x) decreases iq the same manner of more slowly
than the function 1/(Jogl/s)." -

The other main historical jnstance is in connection’with the
existence theorems in the théory.of differential equations, .and
again it was.Lipschitz himself who saw the ufi]ity of condition (1)
ksee Kline [13, p.717-7f8]). Thus if we have a certain differential
éﬁuation, then does it have a so]ption for given initial and boundary‘
conditions? This was first considered by Cauchy who showed thgt the

equation

dy _
o = f(xy) .-

has a unique solution y = f(x} with the initial condition,y0 = f(xo),
éssuming that f(x,y) anq fy are édntinuou&-for all real values of x and
y in the rectangle determined by [ko,xj and [yo,y].

In 1876, Lipschi}z [15] weakened thé hypothesis 6f the,ihgorem,
his essentia} condifibn éeing that for all (x,y]) and (x,yz) in the

rectangle
[x-x 1 < a, ly-y | <b
there is a constant K such that -

[f{x,y,) = FlGyy )l <K ly-xyi.




N .
It is because of this last condition that the existencef\\
theorem is ca]]e;(the Cauchy-Lipschitz theorem. |
Lipschitz conditions are known sometimes aé Lipschitz-Holder
conditions. In Mirkil's paper [17] on Lip;chitz-HS]der functions,
and also in other pépers and books, one might get the impression that
Lipschitz conditions are just the special case when a=1, whereas Hdlder
conditions include the general case 0 < o <'1. But the previog§‘para- Eﬁﬁm
graphs %ndicate that Lipschitz was well aware of them both as early as ;

1864 when Holder was five years old [Holder 1859-1936]. We do féel

however that the outstanding celebrity of the existence theorems made
the special ¢ase «=1, rather than the general one, to come to be

associated so dominantly with the name of Lipschitz.

1.2 Modulus of continuity

Lipschita conditions are related to the concept of the modulus

of continuity of a function, a brief account of which is given here.

’

Notations Let C(I) denote the space of all bounded continuous complex-
. . 2
valued functions on a closed interval (finitg or infinite) of R, with

L 3
the norm

[1f1l, = suplf(x)] .
. x € I ®

For 1 ¢p < =, Let LP(I) denote the space of all functions whose

pth powers are Lebesgue .integrable over I, with the norm



P 1/p

UL, = [;%unpd% e

I

For p = », we denote by Lm(ﬁ) the spéce of essentially bounded

[i.e., bounded almost everywhere] functions on I, with the norm

|11, = ess sup|f(x)] = inf(M,]f(x)| < M a.e.} . Y,

Xel '

[ . ’
Definition 1.1 ~Let’fe C(I) or L™(I) and fét w(s) = w(s;f)

= sup||f(x+h) - f(x}]|_ . Then w(8) is called the modulus of- continuity of f.
thl < 8 | '

n z

. ! .
Definition 1.2 For fe& LP, 1 < p < =, the quantity wp(\)

= wp(ﬁ;f) = sup||f(x+h) ) %

i - f(x)[]p is called the integral modulus of iﬂ%&%
< !

-continuity of f.
The modulus of contiﬁuity w(s) hgs the following properties.

L

THEOREM 1.3 Let f(x) belong to C(I). Then (i)u(s) is a monotone

increasing function of §,8 >0. .
L . v \)
(ii) Lim w(8) = 0 .

§ — 0 ® -

(iii) 1If Qéé) —— 0 as § —— 0+, then f is a constant.

If fe LP(1), then the same properties hold for wp(é).

[

o i .. '
PROOF  See Natanson [18, p.76] for (i),(ii). For (iii), see



Achieser [1, p.162].

-

Definition 1.4 If f & C(I), the quantity

-

w*(8) = sup||F(x+2h) - 2f(x+h) + F(x)}]_
h| < ¢

js called the generalized modulus of continuity of f.

The generalized integral modulus of continuity m;(&)'iS'defined

for functions in LP, 1 < p <=, as -

f(x+2h) - 2f(x+h) + f(x)||p .
§

{

w*(s) = sup|
B L

£

Definition 1.5 The rth difference of f with step h is defined by

r :
- A;f(x) =1 (51)r-3(§)f(x+jh), r being an integer.
: J=0

3

Definition 1.6 The rth modulus of cohtinuitxA&r(s) is defined as

apfll,  fin c(1) .

w (8) = sup]|
- Ih} < g

For f in tP, 1 ¢ p < =, one can also define the rth inted¥al

modulus of continui;x_w;(a) to be

r _ r
wp(a).- supIIAhfIlp .
lh|s &

It turns out that w*(s) and w;(é) are just the special cases (r=2)

"~ '~



1.3 Lipschitz conditions

Definition 1.7 Let f(x) be defined over the closed interval I, and

let
If(x+h) - f(x)] s M|h]®

for all x in I and for all sufficiently small h, M being a constant which

may depend on f. Then we say that f satisfies a Lipschitz condition of

order o, or.f belongs to Lio{a).

S

Definition 1.8 If however ,

|f(x+h) - f(x}]

() 55 h —0 ,
ha

then f is said to belong to the little Lipschitz class Tip(a) .

Remark 1.9 It follows immediately from these definitionsthat lip{a)
y . .

CLip(a) and that any function in Lip(a), « > 0, is continuous.

0 - o-Natations The two symbols 0, o (read "of the order of", and

"of the little order of", respectively) will be widely used in this work,

and so they will be defined here,

L

..

Definition 1.10 Let f and g be two functions of x such that

< A for all x > x [or]|x]<s] .



S\ , | o
Then we write

/ “ f(x) = 0(g(x)) as x — «» [or x —0] . -~

.

If, on the other hand,

.- lim  [f(x)| =0 ,
g%x;

X—a
ry

e

we write f(x) = o(g(x)). as x — a.

With these notations in hand, if w(h) = 0(h®) as h——0 then
f & Lip(a), whereas if w(h) = o(h®) as h —0, then f € lip(a).

\ .
Definition 1.11 In addition, if w*(h) = 0(h®), or w*(h) = o(h%),

then f is said to belong to the generalized Lipschitz class, or %0

the generalized little Lipschitz class Lip*(a), lip*(a) respectively.

'Y

THEOREM 1.12 If f € Lip{a), then f& Lip*(a), 0 < a s 1. The converse

is true only for 0 < a <1 (Butzer and Messel [5, Theorem 2,4,2]).

The function f(x) = sinxloglsinx| belongs to Lip*(1) but not
to.Lip(1) {5, p.76).

" THEOREM 1.13 If f € Lip(a), « > 1, then f is constant.
\ . - -

PROOF For'x €1 and h small we have

|f(x+h) - fo)I-s MhY, i.e, |f(x+h)-f(x)| ¢ Mhm—1 , ’
h
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which tends to zero with h. Thus ka) exists and is equal to zero
everywhere, and so f(x) is constant.

Q. E. D.
Example 1 .Let 0 < a <1, x> N, h > N. Then
. d [( +h)u C'L] - +h 0.“] d—] 0
- -a-x’ X - X = u[(x ) -X ] <
Therefore, (x+h)a - x% js decreasing for all x =0. Hence, *

(x+h)® -x* < h®, which shows that x” is in Li%(a) on any.-positive interval.
Example 2 A special class of Lip(1) is that of functions defined and
having a continuous derivative on a closed finite interval 1. 1If f is

such a function, then f' is bounded. By the mean value theorem, for

each Xy x2 in 1, there is an X between x], x2 such that ‘ /

17(x) = F0q)] = I = iyl £/ (D] <My - Xyl

N

since f'(x) is bounded, i.e., f belongs to Lip(1)

- In general, we prove the following theorem for Lip(1).

THEOREM 1.14 A function f belongs to Lip(1) if aﬁd only if it is the

integral of a bounded function, i.e.,

X
f(x) = f(a) +“J91t)dt ) _ (2)
a

o




1

where a € I, g e L7(1).

PROOF Let f & Lip(1). Then for any set of intervals (a], B1)> /. _

(az. 82), ... in the closed interval 1

n ) "

) |f(8-i) - 'F(Ol.i)l < ZM|8]- - a,
i=1 ’ ' i=1] ™

(where M is'the Lipschitz constant)

which shows that the sum on the left side of the last expression is

less than ¢ for [|a. - as| 58 = ﬁ-, so that f is absolutely continuous,
and hence it is the integral of its derivative f'(x) (which exists almost

everywhere). <
Thus f(x) = f(a) + Jf'(t)dt .
. d ’
‘But

Jf(xth) - f(x)] < M for sufficiently small h
~h

-~

and so |f'(x)] < M when it exists, which indicates that f'(x) is in L™(I).

On the other hand, if (2) holds with g in L”, then |g(x)! 5 M, a.e.

say,\and S0 /
xt+h
T [f(x+h) - f(x)l'sfj g(t) dt!i M|, i.e., f & Lip(1).
X

Q. E. D:

B S AU
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Relations between various Lipschitz classes

_We include here some of the relations that exist between various

Lipschitz Eiasses.

THEOREM 1.15 If « < 8, then Lip(a) D Lip(g) and lip(a) > Tlip(s). \
PROOF  This simply follows from the fact that for g < h < 1 we have %éhk
hB <\ ha ., &

Definition 1.16 The function is said to belong to Lip(asp) if

[f(x+h) - £

i.e., wp(h)

0(h%),

@

0(h%) as h-o. Similarly, lip(a;p) = {f; wp(h,f) = o(h%)}.

1

THEOREM 1.17 Suppose that I is a finite interval. (i) If ays § 3
and o < 0,, then Lip(a];p])ZD Lip(az;oz),

(ii) Lip (a3p) D Lip (a) for any p >1.

PROOF (i) Ifp > 1, let %-+ %—= 1, and M(I) = Lebesaue measure of I.

Holder's fneguality gives

*

: 4 Vp— /9
{FR%T- {}f(x)ldx}ls. ﬁ%f) Jlf(x)lpdx ?%%T) [dx _ . —

L I ,} I -
— ’ -1 1{p

= ]I ‘Jlf(x)lpdx .
T



s
3
Using this with p = pzlﬁ] we have
] | Py ] Po 1Py/Py ,
1) I f(x)] “dx ¢ (1) Jlf(x)l dx . -
I I
or
1 .I/p" ]/pz F RN
[M—m'. l' ) '”")'

This inéqua1ity shows that

and so Li p(az;pz) (o L‘ip(az;p]). ’
. But as in theorem 1,15, we have Lip(a,;py) C Lip(ayspy), and

so L1p(a1,p]):) Lipla ,p2).

(i1) If f‘E Lio{a), then H(x+h) - f(x)| = Mih|® for all xe€ls

p p ap
[1#(xen) - £ dx ¢ 1 M [h| dx = M inl M(I)

% -
’ /p o .
wy(h) < M [M(D)] [h] L

J

f € Lip(asp) .

\

- . N ’ ; *
Notice Theorem 1.17 also holds with Lip replaced by lip or Lip.

13

Thus-

-~

~—

w»



THEQREM 1.18 Let f,géLip(a) on the closed finite interval I. Then

PROOF Since f,g € Lip(a), we have, for all x in I,

[£(xth) - F(x)| < Meh®, [g(x+h) - -g(x)]| < M h™.

)
It is clear that |f(x+h)g(x+h) - f{x)g(x)]

£ (xth)alx+h) = F(x)g(x+h) + F(x)alxth) - F(x)a(x)]

"

lg(x+h) || f(x+h) - f(x)}| + [f(x)]]g(x+h) - g{x)].

J
-

‘But f, g are bounded on I since both belong to Lip(x), and_ :

14

therefore are continuous. Thus |f(x+h)a(x+h) - f{x)g(x)| = Ath“ + QMgha,

where H!fl < B gl ¢ A over 1. Hence |f(x+h)g(x+h) - f(x)a(x)| < kh%,

and k is independent of h, which shows that fg e Lip(a).

-

Q..E: D.

1.4 Lipschitz Conditions on Metric Spaces

Lipschitz conditions can be defined for functions on general

metric spaces.

" Definition 1.19  Let [X, dy], [Y,dz] be metric spaces, g being a real-
valued continuous function such that gh) =0, g(t) ~ofor t >0

-l

Let f be a fqnct%on from a subset S of'x into Y such that




_—

4y (F(x) 2 F1xq)) € a(d)(x2x,))

-~
1

for all x;» X, in S.  In case g = Mt®, the continuity condition becomes
) p
3 .
dz(f(x])a f(xz)) < M(d](x]:xz)) &

for all X1 Xo € S.
If the last expression holds, we say that f satisfies a
Lipschitz condtion of-order a.

We specialize definition 1.19 to the case where X = R" and Y = C

hY

(the complex numbers). .

There

| f{x) -_f(y)l < M[d(x,y)]", where
\

X = (x],xz,...., xn), y = (y]’YZ':"”Xn)’ F?r d we could take

any of the followina equivalent metrics:

| ; 7 2
d1(X,y) = "{;(] - .Y}) + (XZ = .Yz) + ..t (xn - .Yn) ’

dzcx:)’) = IX] - .Y]’ + |x2 - yZI oo F lxn - ynln

max[]xi - yils i =1,2, ..., n].

d3(x,y) i

They give the same class of Lipschitz functions. In particular,

‘dz(x,y) gives : . -



~

;f(x]+h], Xothys oonts xn+hn) - f(x], xz,...,xn)[

< MCIhy | Hhol+ ... +|hn|]“.
A\
This is equivalent to M

|f(x]+h], Xothss ooy xn+hn) - f(x], x2,....,xn)}

S LIT L PY AL PP S W b P

Remark 1.20 Some authors use the following definition for

Lipschitz functions of several variables.

Definition 1.21 f(x) = f(x], Xos «ees xn) is said to be]ong’to

L‘ip(J], Ap e un) if

lf(x1+h], x2+h2, ces xn+hn) - f(x1, Xos +ves xn,!

C!T 12 Q
¢ MUIhy | "+ [hol @+ oo+ Jh il
This reduces to the above special case if
Y
o N B ST
-

THEOREM 1.22 A function is in Lip(ay, a5, ..oy an)

<> it is in Lip(ai) as a function of x;.

PROOF  Let f €.Lib(ai) with respect to each x;; i=1,2,....,M, i.e.,

16

1.
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(X %55 N AT coeaxg) = Xy, X, Ll X )|

a
s Mothe [T ,
Then
1f(x1+h],x2+n2: ...,xn+hn) - f(x1, Xos ...,xn)1
o 2 n
T L A N T M, |1
a a o3
1 2
AN L IR S L N
On the other hand, let the last expression hold. %%
Then it holds for the particular choice hj =0 (3 % 1), . %%5
N - vi{p...
i.e., ’ . s

lf(x],xz, ""xi+hi’ ...xn) - f(x],xz, ..‘,xn)l

%
s Miho| © for i = 1, 2, ...,0.

Q. E. D,

A still further definition of Lipschitz functions of several

R
variables is available in the literature (Bugaec [4]).

Definition 1.23  f(x.y) € Lip(a,8) if

[f(x+h,y+k) - F(x,y*k) - f(x+h,y) + f(x,y3 < Ch%®

0 < a, 8 ¢ 1. \
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| J
This definition does not seem to be equivalent to definition

1.21.

&

Similarly, one can define Lip(a,8;p) for functions of two

variables to be all f = f(x,y) such that

&
-

|| f(x+h,y+k) - f(x.y)llp = o(h® + k%) ,
»

and LipM (a,83;p) to be all f = f(x,y) such that

[HEOxhy+k) = FOOy+k) = Flerhuy) + FGy) | = 0(h%?B) . E%!

‘For these classes, the analogues of theorems 1.15 and 1.17
hold, viz., ‘
(i1) Lip(a, 85 p) > Lipdas 2)
(i) L1p(a],81;p])23 L1p(a2,82;p2) for ap € ags By € 82,.p] < Py -
Where (ii), (iii) hold for bounded domains.

1.5 Lipschitz Spaces

Although Lipschitz functions were known for a long time, their
systematic study séarted rather late. Previously, they were encountered
through their wide applications in the field of ang]isis. It is quite ~
recently (in the last decade or so) that mathematicians have started to
study spaces of Lipschitz functions for their own sake. Several authors
havelfonéributed to the field of Lipschitz spaces. Their contributions
cover variouslaspecté of the theory. Howevér, a few papers deserve special

consideration; they will be mentioned in due course.
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. ~4
In theorem 1.18, we proved that the product of two functions

of a certain Lipschitz class £;>again in that class. This indicates that
Lip(a) is in fact an algebra. '

In the previous section, Lipschitz functions were defined on a
general metric space [X,d], with a special orientation to the Euclidean
space R". A norm-can be introduced on this class of functions to make
it a Banach space. ‘

— "Let Lip(X,d,a) denote the collection of all bounded complex-
vg]ue;ﬂ;ﬁnctions defined on the metric space [X,d] that satisfy the
Lipschitz condition of order « in the metric d. Thus Lip(X,d,a)

consists of all f in X such that both

ll%llm = sup[|f(x)];, x e x] and

[1£]14 = suplIf{x) - f(¥)/[d(x:¥)]1% 5 x.y € X, x F¥]

are finite. ‘e define the norm || || to be

L = T+ T e

With this norm, Lip{a) is a Banach space.

Taibleson [ ~ 24 "] in his siudy of.the theory of Lipschitz
spaces of distributions, introduces several norms on various Lipschitz
classes and discusses the equivalence of those qormé. It turns out
that 1ip(a) is a closed linear subspace of Lip(a). De Leeuw [7]
proved that the space Lip(«) is isometrically isomorphic to the second

dual of Vip(a), 1.e:,
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Lip(a)‘é']ip**(a)'

The simple fact that Lip(a) is an algebra on the one hand,

and a Banach space (with the appropriate norﬁ) on the other,

motivated some authors to study it as a Banach algebra (Sherbept [22])l
In particular, we shall be concerned with the. Banach algebra

~

Lip{T,a) (where T is the circle group) with norm

[IF11=TIEH, + sup [£(eeh) = (1))
teT he
h 0

1.6 Applications of Lipschitz conditigns

We have already mentioned iﬁ the historical remarks the
application of Lipschitz conditions to existence theorems in differential
equations, and to the representation of functions by Fourier series.
Another important application in the field of Fourier ana]ysis,is'the

following theorem of S, Bernstein [£]. ©

THEOREM: 1.24 If f(x}&€ Lip(a), 1/2 < a < 1, then the Fourier series of

f is absolutely convergent. ‘ .
The two theorems proved by Titchmarsh{25, Theorems 84, 85], which
are related to Bernstein's theorem will be discussed thoroughly in

Chapters two and three.

For the Hilbert transfqrms of Lipschitz functions, Titchmarsh proved

the following theorem.
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-

THEOREM 1.25 [25, THEOREM 1067 Let f &€ L7(R), 1 < p, and let

felipla).Then the Hilbert reciprocal formulae

-

o0

'%— [f(x+t) - f(x-t); dt
o t

]

g(x)

LU

and

H

f(x)

‘%— Jg(x+t) - gq{x- t) dt
0

hold for all x, and g(x) € LP and belongs Fo Lip(a) too.
) It is well known that if f & Lip(a), then the nth Fourier
coefficient is 0(n"%) as n o,
In one of his notes on Fourier analysis, Izumi [12] remarked
« that if f € Lip(a), O < o < 1 then it is not generally true that

~.

\ . f(X) - §n(X) = O(n—a)

~where Sp(x) is the nth partial sum of the Fourier series of f. However,

he proves the following,

~

e~

THEOREM 1.26 Let f(x)e Lip{asp), 0 < a <1, p >, ap> 1. Then

F(x) - Sn(x) = 0(—hy7m)

n

uniformly almost everywhere.

We conclude this section by giving some applications of Lipschitz




22

In conférmity with the

functions to the theory of approximation
present work, we confine ourselves to apprboximation of functions by

trigonometric polynomials.
T(x) denotes
S

Let f(x) be a 2n-periodic continuous function

the trigonometric polynomial of nth degree

n
T(x) = a, * £=](akcoskx + bks1nkx)

\H”h

ags s bk being real. HnT denotes the set of all trigonometric
polynomials not exceeding nth order )

Max|T(x) - f(x)| is called the deviation of

a(T) =

T{x) from f(x).
Now 1et T{x)run through the entire set H Then we obtain
Let the exact lower bound

a whole set \of non-negative deviations

of this set b

E = E (f) = inf {A(T?} .

~

is called the east deviation from or the best approximation to

Then E

f by polynomials beTong1ng to H
We now ment1on some applications of Lipschitz funct1ons to

approximation theory.

THEQOREM 1.27 [Jackson's theorem] [18, p.84]

For each 2w-periodic continuous function



‘En s 12w(1/n) ,

where w is the modulus of continuity.

One corollary of this theorem is the following

THEOREM 1.28 If f is in Lip(a)s O < a s 1

o
E, < 124
n(l
The following theorem of S. Bernstein is the converse of
Jackson's theorem.
THEOREM 1.29 If f is a 2w-periodic continuous function, and if
for each n h
\EnS_A__’0<(1$.I
nCl
Then f(x) € Lip(a).
Combining this. theorem with theorem 1.28 we get
{

THEOREM 1.30 If f{x) is a 2n-periodic coqtinuous function, then f is in

Lip(a), 0< a <1 if and only if

This givé% a gbod characterization of Lipschitz functions in terms

of the best approximation by trigonometric polynomials.

»




- CHAPTER THO

Lipschitz Functions on the Circle Group

2.1 Introduction

In this chapter we investigate the Fourier transforms of
Lipschitz functions/in Lp(T), where T is the circle group of cBmplex
numbers with absolute value 1 (which can be identified with the interval
[-7,%]). Unless the contrary is stated p will denote a number‘suqh that
I <ps2,andq is related to p by the relation 1/p + 1/q = 1. A1l
integrations are taken over T, and all summations are taken over the

range [-~,~»] unless otherwise stated. Thus we write
o

/

-

’fkifax-= Jffx)dx %;— J;(x)dx
T

-7

in order to be consistent with'the convention for Haar measure on compact
groups { §3.1). The norm on LP(T)"is given by

!

1/p T
FL 1600 1Pa T = G [ 1000 Pax]

o

1/p

Definition 2.1 Let f belong to L'(T). The_nth Four%er coefficient

J

of f is defined by .

F(n) = Jf(X)e"i"xdx ;
T
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the Fourier series of f is the trigonometric series

SLF] = If(n)et™ :
v
The function g\defined on Z {(the integers) is referred to6 as
~the Fourier Transform of f. “For Z the LP spaces are denoted by
P = LP(2) = tesSle(nm P < =) . »
If f belongs to L'(R), where R is the real 1inez)the Fourier
Transform of f is the fumetion f .defined by

a0

f(u) = Jf(x)e'iuxdx

- 00

If f belongs to Lp(R), 1 < p < 2, then f can still be defined as in
Titchmarsh [25, p.96].

Titchmarsh proved the following two theorems.

THEOREM 2.2 If f belongs to LP(R), 1 < p < 2, and if
;

[ f{x+h) - f(x)||p,= 0(h®) as h —0, 0 < a 5 1,°

ra) ) - .
then the Fourier transform f of f belongs to LB(R) 1or‘p/(p + ap - 1}

< g £ q,[25, Theorem 84].

¢ v

2(

THEOREM 2.3 ~ If f belongs to L°(R), then the. conditions

|1f{x+h) - f(x)|], = 0(h*) as h —0,0 < a'< 1,



”II LI f 26

-x o0 ~
L2 -
and [J + Elf(u)l du = O[X 2“] as X —— are equivalent. [25, theorem 85].

-co
p
' |

The generalization of Titchmarsh's theorems to higher
differences and to functions on R" was the subject matter of an M. Phil.
thesis by the present author [29]. In this chapter we develop the
subject for the circle group T. The fo]féwing lemma will be needed in
due course. - o

£

Lemma 2.4  (Duren [8, p.101]* Suppose bn > 0, and 0 < ¢ < d. Then

N -
Tndb = O(NS) iff § b, = O(NSY)
n=1 n=N

PROOF . Let the first condition hold, and let

n
Sn =7 kd bk’ Then using the partial summation formula
k=1 -

(Rudin [21, Theorem 3.41]) we have

M M-1

-d -d -d -d
by = ISaln™ - (n#1)7T] + ST - Sy N,

n=N n=N ’

M-1
) ncd=1 . encd

n=N .

Letting M » », we obtain the second assertion. Conversely, if

the second assertion holds, let

b, , then

n

R =

moy k

e~ 8
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he

In due course, lemma 2.4 will be needed in dealing with
functions of several variables. Its generalization for double sequences

is the following.

Lemma 2.5 Let an >» 0, and 0 <a < b, 0< c <d. Then the ¢onditions

MoN |

1 1mbndBmn - a[MeN©] (1),
m=1 n= :

N 4 a-by,c

ZM ) . Ban = OIMTTONT] (2),
mxM n= x

M T

- m’8 = o[MANCTY) (3),
m=1 nx _

and C

XM Nan = oM PNedy ' . (4).
m=M n>

are equivalent.

N
PROOF  Let C y = Z]ndan . Then C_, >0. By applying Lemma 2.4,
n=

v



M
b - ayC -b
ym Coo=0[MN"] <« ] C. =0[M"ONC] .
me1 - mN mgM mN [ ]
Thus (1) and (2) are equivalent. Similarly, (1) and (3)

are edﬁiva]ent. ’ .

Let D = ZNan (which converges if (3) or (4) holds).
n:

Applying Lemma 2.4 again, one has

M
I mD = 0MNEY] <« o= ol PNeTY
m=1 - msM™

which shows that (3) implies (4) and conversely, and hence the four

conditions are equivalent.

" 2.2 Fourier Transforms of Lipschitz Functions in Lp(T)$J < psg?2

rd
w

Ve now prove the fo]lowing-lheorem for the circle group T,

which is the analogue of theorem 2.2.

THEQREM 2.6 Let f belong to LP(T), 1 < p ¢ 2, and let f also belong

to Lip(ap), i.e.,

) | 1 ( X+h) - f(x)l!

0 <as< 1. Then ?(n) belongs to t? for

p/(p +anp-1) <85 q=0/p-1
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PROOF First we note that the conclusion of the theorem is true
for 8 = q by the Hausdorff-Young theorem (3.8) and so we may assume that
8<q.
For a fixed h, the Fourier transform of f(x+h) is einh?(ﬁ;,
; °

and so the Fourier transform of f(x+h) - f(x) is [einh-l]?(n) = pjeiNh/2

singﬁ?(n). The Hausdorff-Young theorem would give
2

)

ZlZSinn%?(n)lq < [IFGen) - £(0])0% = o[h®] .

Since |sinnh| > Anh for n ¢ %-, (A constant), we have
2

° T Li/h]
Y1sinnhf(n) |° > A Z[nh?(n)lq , <
n=o 2 n=1 Vs
q*:;:““
from which we obtain gy
- N 3‘4. \‘Sé:;_'::‘
[1/h] &
FInfln) 1% = opnle-tlay
n=1
N Here [1/h] is the integral part of 1/h
N .
Let o(N) = E{nf(n)l
- n=

Then for 8 < q, by taking y = 3/q, § = 1 - 8/q, a, = [n?(n){q,
bn=1 for all n, and applying Holder's inequality in the form

o



Yy 6 y 8
Zanbn s (Ja,) (2b,) where v + 5 =1, we get

N L 8/ N 1-
o(N) sLZInf(n)t;‘j | [z 1] /4
=1 n=1

= Q. [N(]“a)q] 8/q [N]'B/q] =0 [N]'aﬁ'*'ﬁ/p]

1

Applying lemma 2.4 with bp = !?(n)ls, d =23, c=1-aqag +3/p

we get

s
-

N
Z]nel?(n)lg =0 'SPy if and only if
n=

EJ?‘””Q - 0 [uiB-aste/p

n=N

)

But the validity of the Lemma in this case depends on the
condition 0 « 1 - az + 3/p < 8. The condition 0 « 1 - ag + 3/p, oOr

equivalently, 1 « 1/8 + 1/p holds because for 3 - q we have

as 1 =1q+1p-< /s +1/p.

-

The other requirement is

1 - a8 #¥3/p - 8 < 0, i.e., p/(p * ap - 1) <8, which

Ay

we have assumeda Thus ( T,

r

TI(n)1® = o[n"8od*/PY
n=N

30
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This will approach 0 as N — = if

1 -8=-a8 +8/p<0i.e., p/(ptap-1) <3. A similar result
holds for the range [-«, -NTJ.

Remark 2.7 The theorem of Bernstein (namely that any function in

Lip{a), a > 172 has an absolutely convergent Fourier series) is a
consequence of theorem 2.6. In fact a more general theorem of Szasz [23]
follows also from theorem 2.6. Szasz proved that if f belongs to Lip{a),
then ?‘be]ongs to T for 8 ~ 2/(2 &« + 1). To see this, ve note that if

f is in Lip(a), then it is in Lip(a32), and so applying theorem 2.6 with

p = 2 we see that f belongs to :8, where 8 >~ 2/(2 + 24 -1) = 2/(22 + 1),
1

If a > 1/2, then 2/(2x +1) <1, and so f is in 2', i.e., it has an

»
h )

absolutely converaent Fourier series,

Remark 2.8 The function f(x) =

Err e . 0 a < 1, (first

2/2at+] (see

. \
considered by Hardy and Littlewood) is in Lip(a) but f¢z¢
Zyamund [3n] Vol.1, p.243), and so the range for & cannot be strengthened

in theorem 2.6.

Remark 2.9 It aoes without mention that the previous results hold

true for functions in lin(a). Since functions in lip(a) satisfy a stronger
condition than thoge in Lip(a), one wonders whether this would improve
(4

upon the main conclusion, the range of 2 for example, or the inclusion of

-~ . B
{f;felip(a)> in a soecific portion of ¢°?
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\

The same remark can be made about the original result of

Bernstein, and how it is affected if we confine ourselves to lip(a).

2.3 Differences of Higher Orders

We now examine the validity of the preceding theorem when
replacing the first difference f(xFh) - f(x) with a difference of
\
higher -order. Recall that the difference of order m with step h is

f

() = T-D™T W Cerrn) .
o

THEOREM 2.10 Let'fell_p(T), 1<psg 2, and Tet ||a‘;“fl|0= 0(h%) as
h—>0,0<as 1. Then fe 28 for p/(p + ap - 1),§ B < q.

. | d
PROOF Since for fixed h the Fourier transform of f(x+rh) is e1thnf(n)
it can be seén _that Z;\ % 1)m'r(T)eTrhnf(n)

2
* ~

i mnh ™~
= (™M) Fn) = (200 e 2 [sinnh]™F(n) .
Y

‘Thus the theorem of Hausdorff-Young gives in‘fhiS'case
$lsinnf(n) |3 ¢ mne?
. ? ,

Using |sin nh| > Anh for 0 < n ¢ 1/h, we have .
2 .

[1
y |n h™F n)lq = 0('h°'q) i.e.,
N=0

.gggﬁﬁﬁﬁﬁ

M



C1/h}
ZlnAf(n)lq - orplemay
n=o

e
As in the oprevious case, let

N
s(N) = T n™]f(n)|",
n=1

Then Holder's inequality yields <

¢(N) = OEN(m"a)B +1 -8+ B/P] .

Applying Lemma (2.4) with d = m8,

(9]
i

(m-o)g + 1 -8 +8/p, bp= |?Yn)|8, we get

T

[« o]

ZI?(H)IB OEN(m-a)B +1 -8+ 8/p -msl,

n=N ?

which tendsto 0 as N —— if p/{p + ap~1) < 8 s q as before. A similar

result holds for [-m;-N] and the proof is complete.

. /_/\_,' . ,1
2.4 Functions of Several Variables
_For functions of several variables we introduce the following .
notation. .
AN -

. Definition 2.11° Suppose that f = f(xy,Xp5+ - -a%p) is integrabie over

the m-dimensional torus T". The Four1er coefficient of f 13//ef1ned to be
N o



-

A ' _ ~i(nyxytn,x,* ... 4n_x
f(n],nz,...,nm) = J f(x1,x2,...,xm)e 1717272 ﬁ%x dx
Tm

For later purposes, the following lemma will be needed.

3 )
Lemma 2.12 Suppose bmn % 0, 0<a<b, 0<c <d, and suppose

= o(MPNC) .

. N .
Then the series X\Z b, 1S convergent,

PROOF  Define the partial sums

Using the partial summation formula, one has

3 me,,-z Tndy

m=1 n=1" m=1 n=1
- z[z[s md -t 1) s N9
"m=1 n=]

M N-T n

' S - d’  .«d
I N B 4 T o
m=1 nsl.k=1 K m1 k=1

= AMN + BMN , say.

By the partial summation formula,

9e

34

dx -
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7N N1 47 m oM \b
Ayy = d I 0T, F k& 7 (m’p, W
n=1 k=1 m=1 mk
N-1 n M-1
o ~d-1 d -b -b -b
=d-} n Y kTt mTT - (m) T ot M
N-T M-1 m n
<bd J n d-1 ) m o1 ) E 2Pxdp K
n=1 m=1 221 k=1 2
N b N1 g1t od Mo
) *dM- ) n } kT Qe by
n=1 k:? 2=1 ‘
= all) 4 (ﬁ) » say. ' ’

MN

By the hypothgsis of the lemma,

~

) M-1 N-1
all) < K m~ 0] ) n41 . mnC
m=1 n=1

M-]ma-b-1 N—]nc—d-1

) ! ,

m=1 n=1 =

]
e

and this sum is bounded as M, N ——o since a < b, ¢ < d.

Similarly,

N-1
Aéﬁ) < cMP y n~d-1 m3n¢
n=1
- ¢ mab g_]nc—d—T
n=1

’

which approaches zero as M, H —— since a < b, ¢ < d.

In the same manner o
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1}

=
T~
1 x
- Q.

Again, by the partial summation formula,

N M-1
- ~d d «b ~b -b
By = N ko) ot [T -(m+1)7P] + ot M
MN k=1 m=1 "K Mk
N M~1
n-d Ekd T om~P~ 1t
= m=1

e
/

M-b

/A

: mk T Tk
M-1 m, N
D S L P Y
m=1 =1 k=1

M N
b, d
! Je kb,

251 k=1 K

|
Co
—
—
~
~
+ .
[ve)
—~~
~N
A

M
i) cond T w PG ¢ en®d p @bl

which goes to 0 as M, N ——= since a < b, ¢ < d.

N

b, d
2Pk -
1 E=1 2k

N1

p{2). puby-d
) MN .

< CMa"ch“d

<

, by the hypothesis of the lemma, which
approaches 0.as M, N —— for the same reason. Hence
{

5 ]
. §=$mn is bounded as M, N—= , and b__ > 0,

p

It

and so the series is convergent.

~
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For functions of two variables, one has the following theorem.

THEOREM 2.13  If f=f(x,y) € LP(T°), 1 < p ¢ 2 and if

Ol] (12 -
||Af||p =0 [h 'k ] as h,k —0, 0 < ay» @y < 1, where

af(x) = f(x+h,y+k) - fx,y+k) - f(x+h,y) + f(x,y) ,

L

Then Z[?}m,n)|8<wfor p/{p + ap - 1) <8 <a=p/p-1, a= min(a],az).
m#o,Nn#o

PROOF  As usual, a consequence of the Hausdorff-Young theorem in

this case is

1/h1 T1/k : g (a -1
[Z/ 1 _Z/ ]Jmn?(m,n)lq ) n[h(dl'”qk( 5 )q] .
. m=] n=1 .
MOON ~
Let o(M,N) = T ng,;sgf(m,n)gs.

m=1 n=

For 8 < o ,

MoON A /g M N 1-8/9 . '
L Lyt [

-
8

m=1 n=

- g/a 1-3/a
- O[M(]'a1)qf!(1 =299y

OEMB—Q1B+1—B/0 \,s—azsﬂ—e/q]

H

_ O[‘M]‘C‘] B+8/p][N]"C‘~28+B/p] .

Aoplying lemma 2.12, with b__ = IF(mn) 12,

37
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a =‘1 - ayB + B/p, ¢ =1 - as8 + 8/p, b=d=3,

one Qets that

) Zl?(m,n)lB is convergent provided that

p/{ptap-1) < 8 < q, a = min(ey,e,) .

Q. E. D.

For higher differences of f(x,y), one has the following theorem.

THEQREM 2.14 Let the hypothes%s of theorem 2.13 hold with

JALf means the Jth

af = AJALf. Then the same conclusion holds, where a

difference in x of the Lth difference in y of f(x,y).

PROOF In this case, one arrives at

[1/h101/%]
2

(a;-d) (a,-L) q
lmJnL?(m,n)lq = 0lh T2 .

]

‘m=1 n=1

And as in the previous theorem, let

MoN gLe g
p(MNY = ] yim'n f(m{n)l .
" m=1 n=1

~ Then for 8 < q,

. (J-ay)8 + 1 -~ 8/q (L-a,)B8 + 1 - 8/g
s(M,N) = 0[M( ay) S e ]

¢\
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Again, by applying lemma 2.12, with a = (J-l-a])e + 8/p # 1
c = (L-1-ué)8 + g/p +1,b=4Jd8, d = L8, one arrives at the same
conclusion. | 2

Q. E. D.

The next step in this section is to examine the validity of
tﬂéorem 2.13 by employing the additive form of Lipschitz condition for
several variables (definitioﬁ‘l.Zl). Since this has not been dealt with
in (Youﬁis r29]), we would like téntreat it for R. ®

-

THEOREM 2.15  Let f = f(X{,X5s..X ) € LP(R™Y, 1 < p < 2,and et

|1£(xythysXpthys o ooX #h ) = f(x],xz,...,xn)||p
0.] Clz (ln .
= 0[h1 +‘h2 + ... + hn ] as hi —0
0 <a: <1, (i =1,2,...,n) .

j

Then ?(u],uz,...ghl)e L8 for

[N

p/(p+%p—])-<ssq, G;=m'in(u],(12’-0°’an) .

peQOF In this case,

1/hy3r1/0 ~
j...‘ ] Muyhy + ughy + Lol unhn}q}flqdu]duz...dun
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X i

1 Xn, X -
- B\28
G(X1,X2,...,Xn) . [Iu] tu, b 4 un| |1 duy...du_
] 1

-

and G(X) = 6(X,X,...,X) . Then it is clear from the previous analysis

that
A -
XX }u] Uyt g lf{qdu]...dun = orx"%9
B x
1 1
dr equivalently
X. X
J.,,{ lup +up + L unlql?]qdu]duz...dun = O[X(]"a)q]
1 1 ’

(by taking a = min[a1;a2,...,an]). By Holder's inequality
- X X

. - ‘ B/q
G(X) [ !...!|u1 + .. 4+ un|q|?lqdu]...du£}
T 1-8/4
!...l duy...dug k

= OEX(]"Q)G]B/Q[Xn'nB/q]

. o[yB-aBtn-ng+ns/py



It is c]éar that

I?IB a lu] +ou, +

and so

X
18
...l|f| duy...du =

X X

—tme—, O

= [luy -

"

n[x'%’“‘"“"e/p] +0(1) .

. -8
R unl.
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e

cee ]u1 + ... 4 un|°B "G duy..
au]...au

-8 Y3
+ unJ G(u],...,un)]u _

9 e
U] 3U2 aun

.du

=X

other terms of the same order + 0(1)

n[x P TE NI RY 4 o)

The last auantity. is bounded as X——o if

-a8 +n - ng + ng/p <0, which gives p/{p + %'9-1) < 8 < G,

for other oartsof of RN .

Remark 2.16

than that of theorem 2.13

of variables affects the main result.

~

Although the conclusion of the last result is weaker

, it has the merit of indicating how the number

The analogous result for functions

in LP(T") can be proved using the partial summation formula instead of

integration by parts.

with similar results
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2.5 Fourier Transforms of Lipschitz Functions in L2(T)

We begin by proving the analogue in LZ(I) of theorem 2.3.

THEOREM 2.17  Let f belong to L%(T).  Then the conditions

.yt

| [£(x+h) - F() 1], = 0(h®), 0 < a < 1, and

Zl?(n)Iz = O(N_Za) as N ——= are equivalent.
Inf =N

PROOF Let the first condition hold. Then by Parseval's theorem

§ 4)sinnh F(n)|% = l|f(x+h) - £(x)1%dx = 0(n%%) .
2 .
1
Since |sinnh| > Alnh| for O< n <, we have
] .-
[1/h]
5 inhf(n) 17 = o(h?T) .
n=1
and so
[1/h], 4 T,
i Infm 1% ar?e?)
n=1
- N oy 12 2-24
Thus §oInfln) % o(N"T7T) .
n=1

Hence lemma 2.4 gives

1F(n)12 o(NZ"é°'2) = o(N"2y,

nes-18

n=N



since 0 < a < 1.

- On the other hand, let the second condition hold. Then

again by lemma 2.4

N

%In?(n)lz = o(nemZyy
, 14
and so, taking N = T1/h]
leinnh?(n)l2 . h? g [n?(n)l2 ) f(n) 2
< + n
2 n=-HN n|= | |
= 0(h°"2%"%) + 0(h%®) = 0(h?®)
Hence
[1f(x+h) - f(x)[], = 0(n%) .
) g Q. E. D.
For higher differences in one variable, we have the following
theorem.
“ &
THEOREM 2.18 Let the hypothesis of the previous theorem hold, with
At being replaced by Amf. Then the conclusions are the same.
PROOF - A conseayence of Parseval's theorem in this case is

Iisin™nf(n) (% = o(n%) |
2

~
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and the first part of the prdof follows the same line as in the

previous one.

If "the second condition holds, then by lemma 2.4

Nz

so that

Isin"anfn) 12 11" | %*?m)l2
n

= o(hZ"S(hZ“'Zm)5+ a(h2®)

and the rest of the proof follows.

,/,‘ M T
Q. E. D.
We examine the validity of the previous two theorems for
several variables. For convenience, we take up the problem for two

variables.

4
o

THEOREM 2.19  If f = f(x,y) belongs to LZ(TZ), then the conditions

Haf]l, = 0(hk®) (5)

% 5 Inf(mn) 1% = 0 [mToNT2EY (6)
fml >M In] N

§ inf(mn)1? = 0 [MTExtEyT2ay (7)

lm§>M Ini eN

and



45

lm§>M |gltiﬁn,n)|2 = 0 DN (8)

as M, N ——= are eauivalent. Here

af = f(xth,ytk) - f(x,y+k) - f(x+h,y} + f(x,y) ,

and N < a, 8< 1,

pRAOF  If (5) holds, then again by Parsevali's theorem,

¥ leingﬂ_sinnk?(m,n)FZ = 0[h2“k28] ,

—

which leads to
M N . E@
Z Z ’mn?(m’n) IZ = OEM"Z&*&ZN"ZD*'ZJ . (9) [
ml=1 |n}=1 7

But lemma 2.5 shows that (9), (6), <(7) and (8) are equivalent.

Hence (5) implies each of {6), (7) and (8).
On the other hand, if any one of (&), (7) and (8) is valid,

then again lemra 2.5 asserts that (o), (6), (7) and (8) are all valid.

As in the sincle variable case, by takina M = [1/h), N = [1/k], we have

§ Tlsinm sinnkf(m,n) 12
7 2

MoON 1 R |
* h2k2 ) 5 lmnf(m,n)i? + n? v }Z fmf(m,n);2
Imi=1!n!l=1 mi=1 In|-N
N 9
s 29T fmm it e S T f(m,n)°
‘mi>Mnli=) [mi .M ni>N



e ) |
/o ‘ ; o

-

0(h2+2u—?k2+28~2).+ O(h2+2a-2k28)

o .
O(hZak2+28-2) + 0(h2ak28)

= O(hzukzs) . .
The rest of the proof follows by Parseval's theorem. i -
Q. E. D ‘Qﬁﬁihk
' i
R
.ﬁg
L3
g >
! . ~
. .
3



CHAPTER THREE -

LIPSCHITZ FUNCTIONS ON COMPACT ZERO-DIMENSIONAL GROUPS

3.1 Fourier Transforms on Groups

The idea of a topological group arises from the notion of
two structures 3mposed on a set at the same time; one is algebraic and

the other is topological.

Definition 3.1 A topological group is a ﬁéusdorff space G which is

La]so a group, prqyidea the map

(X,y) — x-y

is a continuous map of the product space GxG onto G. If in addition G

is a locally compact space (i.e, every point has a compact neighbourhocod)
and at the same time an abelian group, then it is cailed a locally compact

abeljan (LCA) group.

Characters on Groups

Definition 3.2 A complex-valued function y on a LCA group G is called

a character of G if |y(x)]| =1 for all x € G, and if the functional

equation ;///,—\\\_\‘

((xty) = y(x)x(y) (xoy € 6)

is satisfied.
47~



The Dual Group

Definition 3.3 The set of all continuoﬁs characters of G forms -

a group T - called the dual group of G - if the binary operation -

addition in this case - is defined by

(v1+rp) () = v{(X)vp(x)s (X &€ G, vpavy, € T).

-

" From now on, y(x) will be denoted by [x,y]. Some of the

elementary properties of [x,y] are: g ’
. e - R - .
[O:Y] ='[Xa0] =1, (X€ G, vy F) -
[-xoy] = [xa-y] = [xovd™" = Txovd
- It is essential to note that all integrations which will be

used subsequently in-this chapter are taken with respect Haar measure.

The basic result in this connection is the following ;h%Prem.

\ \

.8

THEOREM 3.4 On every LCA group G there exists a non-negative regular

measure m - called Haar measure of G - which is not identically zero,

and which is translation-invariant, that is to say
m(E+x) = m(E)

for every x € G and for every Borel set £ in G.



For the construction of such a measure on 6, as well as for
jts basic properties, one may rgfer to Héwitt.and Ross [Vol. 1, chapter 4].
One important point to be mentioned here is that the Haar measure m
is unique up to a mu]tip]icativg positive constant.
If G is compact, it is customary to normalize m so that
m(G) = 1. If G is discrete, any set consisting of a single point is

. . 2
assigned the measure 1.

Definition 3.5 Let 1 < p < . Thern LP(G) is the space of all §§§

L]
measurable functions for which the pth norm t‘

’ 1/p -
111, = [[1£(x)1Pax] ‘
JIT

is finite, where dx stands for the Haar measure dm(x) on the LCA

group G,

The Fourier Transforms

Definition 3.6 For all f e LV(G), the function f defined on the

dual group T by

(y) = lf(x)[-x;v]dx (ve 1)

is called the Fourier transform of f.

2

This general definit{on embraces the three famous and classical
,_de?initioﬁs of the Fourier transfpfm. Thus if G = R (the real line},

TS
L]
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then it is kndwn that the dual of R is R itself, and that the/).

characters on the dual take the form s

A

1yx (y € R),

y(x) = e

and so for G = R we have

?ky) = [f(x)e°iykdx (y € R)

-

If G is the circle group T, then the-dual group in this

case is Z, the additive group of integers, and we have

n
?(n) = E%— (f(eie)e-ingd ) \}(n € 1) ,
™

-

whereas if G = Z, then

Fe'® = 7 f(n)e M@ (e'%e T) .

== A

b £

A few facts about the Fourier transforms which will be needed
later are mentioned here. -

It is well known that if‘f is in L\(G) then f is continuous
on I and that Il?llm s~J|fl1]. We shall be concerned only with compact
groups in this chapter, and so LP(G) < L1(G) for p > 1. Thus in
the following two theorems it should be borne in mind that, -although

they'g}e valid for any LCA group, the Fourier transforms of functions in

>



"LP(G) need no special definition in our case.

THEOREM 3.7 Llet f, ge L2

G). Then the/ formula

[f(X)ET;THX = i?(v)a(?yﬂY holds.
G

This is known as Parseval's identity. See Rudin {21,p27].

THEOREM 3.8 Let f ¢ LP(6), where G is compact, 1 < p < 2. Then

fe 1Y) for'%w %—=‘1, and

' P
||f||q S ||f||p holds.

. ~ . - ‘:ii??;‘
This is the Hausdorff-Young inequality {(Hewitt and Ross &

(11, vol 2, p227]).
For the sake of completeness, we prove the following two

theorems about compact groups.

THEOREM 3.9 The orthogonality relations

(1ify=0
[XsYJdX =
L 0 if v# 0 \

hold if G is compact.



PROOF If y =0,then [x,0] = 1 and so '
/
J[x,Y]dx = de =m(G) =1 . _
G G ‘ -

If vy £#0, then {x,0] # 1 for some x_ in G, and hence

0

[[X,Y]dx = [xgv] l[x-xo,yjdx = [x557] JLx,dex .
G G

But the last equation cannot hold for [xo,y] # 1 unless

([x,y]dx =‘0.
6 \ Q. E. D.

THEOREM 3.10 If G is compact, then T is discrete.

~

-

PROOF I f(x) = 1 for all x € G, thén f € LY(G), and F(0) = 1,
?(Y)‘= 0, if y # 0, by the previous theorem. Since f is continuous,

the set consisting of 0 alone is open in G and so G is discrete.

Q ‘ , &v/,/ﬂ\\\

3.2 _The Structure of Compact O-Dimensional Groups ' B

‘. " 3 -
One of the reasons ‘that-we have chosen compagt zero-dimensional

groups for our inveétigations is that there havé been a ggod nqmber
D

4

\\ ,
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' )
of syccessfu] studies of some parts of harmonic anal}sis on those

grouos. Vilenkin [26] defined the Dirichlet kernel and the Lebesgue
fuﬁctions for such groups and discussed the convergence of Fourier

series, summability questions analogous to the Fejér kernel method,

as well as absolute convergence and uniqueness theorems. Much related

to our purpose is the paper of Walker [27a] on Lipschitz classes on
0-dimensional groups, where he obtains an analogue of the classical
Bernstein Theorem [Theorem 1.24]. (Vilenkin had done this for the

case where G is primary).. An important special case occurs when G is

the direct product of cyclic groups of order 2, for then T can Be

jdentified with the system of Walsh functions. \

The study of harmonic analysis-in general- on zero-dimensional
groups is also important because it is a natural step towards the study
on the more general class of finite - dimensional groups (Walker [27b]).

We turn now fo study the strucidrél properties of compact,

metrizable, O-dimensional, abelian groups..

Definition 3.11 A metrizable topo]ogjca1 group is a group whose

topology can be completely described by a suitable metric employed on it.

One of the main facts about metrizable groups is the following.

-

. THEOREM 3.12 . Let G be a topological group. Then G is metrizable

if and only if there is a countable open basis at e, where e is the

identity elements of‘G [11, vol 1, theorem 8.3 p. 70]. |



-

Definition 3.13 A topological spacé X is called 0{(zero) dimensional

if the family of all sets that are both open and closed is an open

i

basis for the topology of X.

Definition 3.14 A cover A of a set X is said to be a refinement of

a cover B if each member of A is a subset of a membey of B.

Definition 3.15 Let X be a set, and &f a finite fgmi]y of subsets of X.
For x € X, let m(x) be the cardinal number of the subfamily {A e #;

xeA}. The multiplicity mif) is defined as max {m(x):x € X}.

Now let X be a compact Hausdorff space, and let n be a

nonnegative integer. Then X is said to have dimension n if the following

two conditions are satisfiéd: |

(i) every finite open covering of X admits a finite closed refinement C
for which m() s n+l, .

(ii) there is some finite.ooen covering“U of X such that if & is a finite ’

closed refinemen£ of U, then m(C) > n+1.

. For the special case of O-dimensional spaces we have the:

following theorem. '

-

THEOREM 3.16 For a compact Hausdorff space X, the definitions 3.13

and 3.15 of zero-dimensionality aﬁi equivalent.

x -

PROOF  [11, vol.1, p.15].



3.17 Examples of 9-Dimensional Groups

As an example of those groups we take the product group

6 = ff 2(s;)
i=1

where Z(Si) is a cyclic group of arbitrary order Si with the discrete

topology.
G, with the product topology, is compact by Tychonoff's

Theorem. A sequence x" converges to x=(xi) € G< for every positive

integer k there exists an integer N such that

Moy
- 5
-

Thus the metric

dix,x") = 555,05,

' js equivalent to the product

if Xs = x% (i = 1,2,..., n-1) and xnf X

topology on G, and so G is metrizable. The subsetsan={x € G;xi = O_for
1 < i £ n) are open and closed énd foéh.a basis for the topology of G,
which shows that 6 is D-dimensional.

In particular, if S; = 2 for all i, this gives us a group
-connecded vith the Na]éh.functioég (see Walsh [28]). Fine [9] shows

that the system of Walsh functions can be identified with the dual of

55
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the group T Z(2). Chrestenson [6] studied the generalized Walsh.
i=1 ’

functions which are identified with r when S]. = r for all i, where r is

a positive integer.
¥ &
. Another example of a compact metric O-dimensional group is

the group of p=adic integers [11, Vol. 1, p.109-110, 408.].

4

THEOREM 3.18 On any locally compact O:dimensionaf‘l group G, there

is a neighbourhood basis at e consisting of compact open subgroups of G.

PROOF (adapted from ‘21,;).41]). Since G is O-dimensional there

is a neighbourhood base at 0 consisting of sets'wh_ich.are both open and
closed. Since G is locally compact the neighbourhood base can be
chosen to consist of compact open sets. Let U Be a.compact open
neighbourhood of 0. Since U‘is open for each x € U there is a
symmetric neighbour;hood Vx of 0 such that x +‘Vx +V, ¢ U. Since U is

compact there is a finite collection of points {x].xz,...,xn}c U such that

Let W = (rlj Vx; and let H be th.e subgroup of G generated by W. Then
HCU. [F;:]if Y€ N, then x € U= x € x;+Vyj for ‘some i >x-y €
x1.+Vx1-+w'c Xy Hxy < UL Thus UNl < U and so HC U]. Also H is
open because Y is open. ;'\ny opén subgroup is closed and so H is closed

and therefore compact (as U i3 compact). Hence H is a compact open



subgroup of G which is contained in U.

Q. £. D. o

Theﬂremaiﬁder of thig section consists of an elaboration of
§2 of Walkers paper [27a]. We assume henceforth that G is a comﬁact,
" metrizable, O-dimen§iona1, abelian group. By theorem 3.18 and theorem
3.12 there is a countable set of neighbourhoods of 0 {An} which are open
compact subgroups of G, and are ordered by Jnclusion

G =8, D8 D8y Dl D AD AHHD...D{O} ’

.

o

and a_ = {0}
n=o "

Ve
If G is infinite4 then one can assume that the inclusions are

proper.

Y

Definition 3.19 Let Py —Tl—jg, where m is the Haar measure on G.

m An
Then p0=1 and P, —® as n ——=,
Define
Pn .
fn(X) = if x€ An
0 if x(¢ 3
Then



£l

L] wwﬁ“i&:hﬁn”wwﬂhﬁw Wns aabme Skt WTR A 1se 2 AT M s e Al @
¥ <
-

THEOREM 3.20 The order of the quotient group G/An is Ppn-

PROOF Let the order of G/An be N. There are N disjoint cosets of

A, and since m is invariant under translation each of them has measure

LY

m(An+x) = m(An) .
Thus \ §§5

1 = m{(G) = Nm(An) s

b

which implies that

)

_ 1
N = miAni Pa .
~ Q. E. D.

)

.

Definition 3.21 The metric on G.

-

Let {sn} be a sequence which is monotonically decreasing
and such that g — 0 as n e, For x,y in G, define d(x,y) = |x-yl,

- where Ix]= 3 if x is in a3, and |0] = 0. (Here & N3 .4

= ‘ i i of G, we have
= {x € An,x.¢'An+1}). Since each & is a subgr?up .

Ix+y| < max(]x}.{y})

and this -+ that d is a metric on G. The topology generated by d



RS . .
o ks oty b s L alli s Y EK T el gSr A R L P R 1R U S G

st e AL —

N N

i

Y

I SO b RO

59

is clearly equivalent to the original topology on G.

In particular we choose 8, ]/pn+1' This choice is motivated

by Example 3.17 where Pp = 5¢55-..5,.

Definition 3.22 Let H be subgroup of G. Then the annihilator

of H in 1t is

v

A(H) = {y e r;[x,v} = 1 for all x in H} . &\?
¥

In particular we define Vn = A(An).

It is clear that

{0} = VOCV] C ... cvncvnﬂc: ... C rt, and

again all inclusions are proper if G is infinite.

THEOREM 3.23 Vn is a finite group with order P~
~ \

. )
PROOF If ye Vn’ then

™~

n

Fy) = ifn(;)[-x,vldx = [ fr{x)[-x,y Jdx,

since f ' = 0 outside s,. But [-x,y] =1 for all x in y, and v in V,

) that'
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If y is not in V_, then it is a non-constant ‘charagter on
4

L and hence ?;(Y) = 0 (by the same argﬁment as in Theorem 3.9).

We deduce from .the Riemann-Lebesque Lemma fhat Vh is finite.

The inversion thearem then gives ,5.. -
. % -
f(x) = [fn(v) [x,vldy. = § [x,v]. - 4
r - Voo ‘ L

v

! N
Since P, = fn(O) = é 1, it follows thgt'ﬁn has order Pp»

n

Q. E. D.

THEOREM 3.24  The dual group r = { Vv .

‘e

PROOF  If y is in I, there is a neighbourhood &, of 0 such that

Re[x,v] > %-for x in 8y . Then. _ i

Relék(x)[jx,Y]dx = Ref pk[-x,Y]dx > %n.
Ak .

-

e
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A
This means that Refk(y) > %-. But from the proof of -

Theorem 3.22 we know that ?;(y) = 0 whenever y ¢ Vk’ and so y& Vk .

-

Definition 3.25 If every element of G has finite order, then G is

called a torsion group.

x

THEOREM 3.26 If G is compact, metrizable, and 0-dimensional, then

r is a discrete countable torsion group.

PROOF - |
(i} If G is compact, then T is discfete (by Theorem 3.i0).
(ii) If G ﬁs a compact'metr%c space, then C (G) (the space of
| continuous functions over G with the sup-norm) is separable
.- [31, p.169].

Now fgr'ylfyz, Theorem 3.9 gives

”Y]"Yzl |2 = lil[x:Y]]'[st&jlzdx

A

- [l[XsY]!2§X N [][x,yé]lzdx -_ZRei[x,y1] [xovgldx

G ‘ G

‘F - - 2 " /

A
v



Hence if T were uncountable, then the relation
|lY1“Y2|lm = v/2 for Y1#Yo in T would imply that ¢(&) is.not
separable. This ;hows that T is countable.

(i) -The assertioﬁ that if G is O-dimensional than T is a
torsion Jroup follows immediately from Theorem 3.24 fince each Vn

is finite.

LS

Definition 3.27 let S = p /p ;

Remark 3.28 -The order of yn+1/vn is pnﬂ/pn = Sn+1' If-G is infinite

(as we shall henceforth assume) then Vn+]/Vn is 5 non-trivial group

and so‘each Sn is an integer which is 3 2, which-implies thgt‘pna 2",

We may assume that each Sn is prime’bécause,wé can' first achieve

Vn+1/Vn gyclic by interpolating fqrther groups between Vn and Vn+]

(each generated by the preceding group and an additional e]ementj, and)
then we can repeat this procegs to achieve Voer/V, of prime order. Since

/ . - P

(678,410 / (8 78, ,3) = G/8

and G/An has order pn.if‘fo1jows that the order of An/An+I is

Pg+1lpn = S 4. Thus we have



3.3 4gpschitz Functions in LP(5)
In this section we prove an ana]oéue for compact metrizable
g-dimensional groups of Theorem 2.2 (Titchmarsh's Theorem 84) and

——

Theorem 2.6.

)

THEOREM . 3.29  If f(x) belongs to Lp(G), 1 < ps< 2, and if f belongs

to Lip(a;p) for o« > Q, i.e.,

- ilf(xm) - £(x)|Pdx = 0(]n|®P) , M)

where |h| denotes the metric op G given by Definition 3.21, then fF
"belongs to Lsﬁr), where | |

-—

p/{p+ap-1) < 8 < q ='p/(p-1) .

PROOQF Since the Fourier transform of

L

g(x) = F(x+) is 8y) = Th.vI8(v) ..

the Hausdorff—Youﬁg‘Theérem (3.8)yields _ . N
LICRYT 1] OfF () 1% M n)ea o @
T : : S
. _ 2
where h is any element in G. : P

We shall employ the notation introduced in the prévious

section. Take h to be in A _N4,.

Then according to Definition 3.21,
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8,-1/8y (See Remark 3.2§).

MY et e Sl Yt 3 ) e A S e s
.

v . y

[h| =

Since Sn is prime, h+An generates the cyclic group

%

Define T = V.~V _;. He claim that

ye T, = Thyl #1.

Suppose vy e:Vn. and [h,y] = 1. Then for all x in boys

we have x+An = kh+An for some integer k and so

= kh+x' -, where x' is in An

“,:Q"
a4

Therefore

EX:Y] = [th]k[X"’Y] =

s

This shows that Y belongs to V -1 and so the c1a1m is proved.

But S h is in LY and so [h,y] n = 1, which gives [h,v]
qsun -—-!, where 1 < k

-~

= exp(2“1k) and |[h,y] -]lq s S,-1, and k

depends oh .

Thus we have

] ' H -’
|8 19sin? (25)"= 0(p, ™Y
b n g
Now h was chosen to he any element in 4, 1Mo, and~60- one can

replace h by 2h, 3h,..:, {S _y)h. Therefore k can be replaced by
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2k,3k,...,(5n_])k, i.e., for all t, 1<t < Sn_.!, we have
TIR() 19sin % = o(p, 79 .
Tn ! n N n
Define ~
. 1 k 3
\ T..={ysye T, s g5 <%
‘ nl n 4 Sn q
n
o 1k 1] 3k _ 7
Tnz ={yiveT,» g<g s Og¢ S < g
%
€
1 k 1 ] K ]
, = {yivye T, » <z §— or —m g =<1 - —.1
(qnm n 2m+l S 1 o S, _2m+T}
vihere m = [1ogSn i.e., . )
log?2 &
' /
N /
2 n-ogn
. . 3 - . {
In particuTar, for 1 s J <m, take't; = 2371, Then on T A
we have - -; [
“t‘k '. R q . q l *:‘ . .
sin® (S s ¢TVR 2 L :
ST *
i.el, . :

‘.



T

and so

A m
TiF(v) 9 = 21

J
Tn

Let

T1F(v) |
Tn

¢(n)

Tnj

TnJ

.

A rt.k S
Zl?(Y)lq s (/2)° Zlf(Y)lq51nq(_§i—#= o(p, "M

For 8 < q, Holder's inequality yields

N

¢(n)

. n

0 [(Togs, )

W

0 [(1ogSn)

Henbe

A 8/
I ¥ 1%
- T

- - 8/q
-aq
0 {logS,p, ]

., 8/
0 [(logs;) .P,

U1 1
Tn

1-8/49

Epn—pnr1]

af
10 [p,]

é/q ]—aé-B/q
Py

g/aq

Pn

1:as—s+s/p]

1-8/9

1-8/q

TIF(1) {9 = o(mp, "*9) = 0(Togs p "%
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TIFOE = 1R B + 5 57 1F(n)18
r ‘ n=1 Tn

N

A o 8/q 1-ag-8+8/p
| F(0)|® + « 21 [(logs )} p,
n: »

1A

: o " 8/q  1-aB-B+8/p  1-aB-348/p
TR :
FO1° + K T (ogs) (s, o,

N

*

)s/q T T-aB-p48/p
o '

] Pn-1

A

1F0)® + x 7 ({1095,
S B/q+GB‘]
n

But by the hypothesis

p/(ptap-1) < 8

-

which gives - //“

1-a8-8/q = T-aB-B+8/p < O .

rl

It follows that

. n
Thus using the féct_ihat Pn-1 * 2n—1’ and the hypothesi; that

1-ag-8+8/p < 0, we see that the series n (3}

k]

(3)
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is convergent, firom which wé deduce that £ is in LB(P).

Q. E.\D. \<:)

Corollary 3.30 If\f belongs to Lip(a), o > 0, on a compact )

metrizable 0-dimensional group G, then

Te B(r) for B>2/(2a+1). )

L5
e

PROOF Any'f which béﬁéngs to Lip(é) is continuous and therefore is

in LZ(G). The'cordf@%ry then follows from Theorem 3.29 by taking p=2.

Remark 3.31 The analogues of Bernstein's theorem proved by Vile

[26, Theorem 5] and Walker [27a, Theorem 1] are immediate consequences

{

of, r611dry 3.30.

Remark 3.32 Theorem 3.29 is also valid if equation (1) is replaced

by
- [;A;f(xnpdx = 0 [n]°P]-
-G )
where A f is the difference of order r and step h. (See Theorem 2.10)}.

h :
The on]& changes in the proof stem from the fact that inequalj;y‘(z) ig -

replaced by . ) . ' y
$1Chyy3-1]79IF() 19 < M]n)° '
r L :
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<4 .
-t

3.4 Lipschitz Functions in L?LG)_ >
{ : ;

In this section we explore the validity of Theorem 2.3

(Titchmarsh's Theorem 85) for compact metrizable O-dimensional groups.

-

THEOREM 3.33  Suppose that f belongs to LZ(G) and « > 0. If f

is in Lip(a32), i.e.,

Ilf(x+h) - £(x)|%dx = 0 (|h|®*)as h —0 (4)
G ;x
then
2 2 e . '
rzvnlf(ﬂl = 0(p,” ") as n —= (5)

where|h{, Vé, and p, are as defined in §3.2.

w

PROOF By Parseval's theorem,
. A i . ' 2
TILxsv3- 121f(x) 2 = flf(x+h>-f(x)12dx = o([h]%®),
T ‘ .
and as in the broof of Theorem 3.29 we obtain

oo N
;|f(y)|2 = 0 (1ogS, p, """
U

y
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_where To = VoVt .

oash
Hence
RGO
I‘\Vn Tn+1 Tn+2
= 0(10§$ D 'éa) + 0(1ogS '2“) +
n+l “n+l 9on+2 Ppe2 s
Now -
‘ ' %L
. %g\g
"3 - - 2a _ e . -2a
kzn+1 I?QSk(pk) = kzn+]1ogsk(5ksk_]...Sn+lpn)
- 24 ;
__ n TogS logS,_ ., TogS -2a
=3 2 [ n+] + L +k=n+3———-25- (Sp_q+++Spap) :]' -
n+1 Sn+2¢® 5, <%

K

Using the fact-that Sn 2 2 for all n, we find that this

expression is less than

D -2 ‘1ogsn+] logSn+2 2 1095k (Zk-n-z)—Zu
n T 2 ' T 2o KEn#3T g 2 :

S Snfc k
= 0(p, %)
because ~ 1095, _ () and the series is convergent for a > 0. Thus

3



Remark 3.34 We conjecture that the converse of Theorem 3.33 is

also true, i.e., we conjecture that conditions (4) and (5) are actuaily

equivalent, but ‘we have been unable to prove this.

Remark 3.35 Since Pp > 2", then Theorem 3.33 gives.the following.

If f belongs to Lip(v;2), then

C 3 IR = 02 as n —e

T\Vn .

In fact if we are not concerned with formulating condition (5) so as

to be equivalent to (4), but merely a consequence of ,(4), then the proof

of Theorem 3.33 extends to cover the case where f& Lp(G), 1 <ps2,and _

so ve have the following result:
If f-€ Liplasp), 1 < p s 2, then

IoIF(n1° = 0(p ") = 84277 as 0 ——
I\

r\Vn %

" where q = p/p-1
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