Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8451
Title: BLIND ADAPTIVE MULTIUSER DETECTION OVER TIME-VARYING TIME-DISPERSIVE CHANNELS
Authors: Balasingam, Balakumar
Advisor: Kirubarajan, T.
Department: Electrical and Computer Engineering
Keywords: Electrical and Computer Engineering;Engineering;Electrical and Computer Engineering
Publication Date: Nov-2003
Abstract: <p>In this thesis, blind multiuser detection of Direct Sequence Code Division Multiple Access (DS-CDMA) signals over time-varying time-dispersive channels is considered. A number of methods for multiuser detection over time-dispersive channels have been proposed previously. Blind multiuser detection requires that the signature waveform of the desired user be reconstructed (blindly) at the receiver. In time-dispersive channels the knowledge of the channel order (length) is needed in order to reconstruct the signature waveform exactly. Previous works in this regard assumed the knowledge of the channel length or they considered an over estimated channel length. However, when the channel length assumed at the receiver differs from the actual one, the performance of the system can degrade significantly. Hence we propose a new multiple model approach that considers many channel-conditioned multiuser detectors in parallel in order to obtain a better estimate via soft decision, instead of making a hard decision about the channel length. We use the Interacting Multiple Model (IMM) estimator, which consists of multiple Kalman filters, to find a better overall estimate from the channel-conditioned filters. Further, in a time-varying environment, where the channel length varies with time, the proposed scheme tracks the channel order very well (without assuming known channel length), and hence performs better than previous methods. Simulation results show that the proposed method outperforms the existing ones in terms of signal to interference plus noise ratio and bit error rate in a time-varying channel.</p>
URI: http://hdl.handle.net/11375/8451
Identifier: opendissertations/3657
4674
1672259
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
10.79 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue