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Abstract

In this thesis, blind multiuser detection of Direct Sequence Code Division Multiple Access

(DS-CDMA) signals over time-varying time-dispersive channels is considered. A number of

methods for multiuser detection over time-dispersive channels have been proposed previously.

Blind multiuser detection requires that the signature waveform of the desired user be recon

structed (blindly) at the receiver. In time-dispersive channels the knowledge of the channel

order (length) is needed in order to reconstruct the signature waveform exactly. Previous

works in this regard assumed the knowledge of the channel length or they considered an over

estimated channel length. However, when the channel length assumed at the receiver differs

from the actual one, the performance of the system can degrade significantly. Hence we

propose a new multiple model approach that considers many channel-conditioned multiuser

detectors in parallel in order to obtain a better estimate via soft decision, instead of making

a hard decision about the channel length. We use the Interacting Multiple Model (IMM)

estimator, which consists of multiple Kalman filters, to find a better overall estimate from

the channel-conditioned filters. Further, in a time-varying environment, where the channel

length varies with time, the proposed scheme tracks the channel order very well (without

assuming known channel length), and hence performs better than previous methods. Sim

ulation results show that the proposed method outperforms the existing ones in terms of

signal to interference plus noise ratio and bit error rate in a time-varying channel.
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Chapter 1

INTRODUCTION

1.1 Literature Search and Motivation

Direct-Sequence Code Division Multiple Access (DS-CDMA) is becoming a promising tech

nology for wireless communication systems. Multiple Access Interference (MAI) is an impor

tant issue for research in CDMA systems and various multiuser detection techniques have

been proposed to alleviate the effects of the MAI. The optimum multiuser detector was de

rived in [26] and it was shown that the MAI can be effectively eliminated by the optimum

detector. However, the computational complexity of the optimum multiuser detector is pro

hibitively high. Hence several sub-optimal receivers have been proposed in the literature to

eliminate the MAI [3,18,19,21,24].

The early works on multiuser detection assumed that the codes of all users were known

at the receiver, and made a simultaneous detection of all users (hence the name multiuser

detection). This assumption is realistic if the detection is, for example, at the base station

of a mobile communication system since the base station needs to perform detection for

all users. On the other hand, it is unrealistic to assume that a mobile station would know

1



CHAPTER 1. INTRODUCTION 2

the codes of all the other users in a cell. It is therefore desirable to consider multiuser

detectors that need to know only the code of the desired user, which leads to blind multiuser

detection [1,5,20,22,29,31,33].

In a blind multiuser detection scheme, the exact knowledge of the signature waveform

of the user of interest is required at the receiver in order to estimate the transmitted data.

In time-dispersive channels the effects of Inter Symbol Interference (ISI) distort the original

signature waveform of the user. In such situations channel parameters have to be estimated

in order to construct the signature waveform at the receiver. Training data sequence can

be used for a better estimation of the channel. However, if the channel can be estimated

without relying on training data, the effective data transfer rate can be increased significantly.

Several multiuser detection techniques with blind channel estimation have been proposed in

the literature [4,17,23,28,30,32].

Kalman filter [2] has been analyzed for adaptive multiuser detection in previous work

[6,7, 15, 16]. However, they require significant a priori information about the interfering users

(i.e., other than the desired user) for multiuser interference suppression
— these methods

are not exactly blind. A Kalman filter based blind multiuser detection scheme was proposed

in [33] for synchronous CDMA signals where the perfect knowledge of the signature waveform

of the desired user is assumed at the receiver. Realizing the fact that the total interference in

a time-dispersive channel is a combination of interference from other users and the ISI effects

on the desired user, once the signature waveform is reconstructed at the receiver, the same

principle as in [33] can be used for blind multiuser detection in time-dispersive channels.

In a time-dispersive channel, the received signature waveform is the convolution of the

spreading code of the user with channel coefficients. Once the channel coefficients are es

timated, the signature waveform can be re-constructed at the receiver by convolving the
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spreading codes with the estimated channel coefficients. The performance of a blind mul

tiuser detector is highly sensitive to the accuracy of the estimated signature waveforms.

Further, the accuracy of the estimated channel coefficients depends on the knowledge of

the channel length. Wrongly assumed channel length can lead to poor estimation through

over/under modeling.

In this thesis we propose a new method that considers the possibility of time-varying

channels using multiple channel models of different lengths, from length 1 (no time-dispersive

effect) to a maximum channel length. In addition, the algorithm explicitly considers the

switching of channel models as the transmitter passes through different environments. The

new detector evaluates the resulting signature waveforms conditioned on the different models

and assigns probabilities to them. The switching of channel orders is modeled as a jump-

linear Markov chain process and the Interacting Multiple Model (IMM) estimator [2] is used

to track the changes in the channel. The IMM estimator, which has been shown to be effective

in maneuvering target tracking problems, consists of different Kalman filters with different

structures and/or parameters running in parallel. The estimates from different channel-

conditioned Kalman filters are combined probabilistically to form an overall estimate. In

the new multiuser detector, an overall estimate of the received signature waveform from the

desired user is formed from the channel-conditioned waveforms and the associated channel

model probabilities.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, standard multiuser detection

techniques are reviewed. In Chapter 3, multiple model estimation techniques are reviewed. In

Chapter 4, a new blind adaptive multiuser detection scheme for time-varying time-dispersive
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channels is presented based on the Interacting Multiple Model Estimator. In Chapter 5,

simulation examples are provided to demonstrate the effectiveness of the proposed adaptive

estimator.

1.3 Related Publications

1. B. Balakumar, T. Kirubarajan and A. B. Gershman, "Blind Adaptive Multiuser De

tection Over Time-Varying Time-Dispersive Channels" , Proceedings of the IEEE Inter

national Conference on Systems, Man and Cybernetics, Washington, D.C., pp. 1922

1927, Oct. 2003.

2. B. Balakumar, T. Kirubarajan and A. B. Gershman, "Blind Adaptive Multiuser Detec

tion Over Time-Varying Time-Dispersive Channels" ,
To be submitted to IEEE Trans

actions on Communications.



Chapter 2

REVIEW OF CDMA AND

MULTIUSER DETECTION

2.1 Multiple Access Techniques

Multiple Access (MA) communications refers to a communications system that allows more

than one user to transmit through a physical channel resource at the same time. This section

briefly reviews some common multiple access techniques like, for example, Frequency Divi

sion Multiple Access (FDMA), Time Division Multiple Access (TDMA) and Code Division

Multiple Access (CDMA).

2.1.1 FDMA

In FDMA, users transmit all the time, but each one is allowed only one segment of the total

system bandwidth. There is no interference from other users in FDMA because signals do

not overlap in frequency.

Frequency Division Multiple Access (FDMA) is the oldest multiple access technique. The

5



CHAPTER 2. REVIEW OF CDMA AND MULTIUSER DETECTION 6

signature waveform of each user in FDMA occupies its own frequency band and by simple

filtering the receiver can separate the users signals. Although FDMA is applicable to both

analog and digital modulations, the maximum bit rate per channel is fixed and small, inhibit

ing the flexibility in bit-rate capability that is essential for future communication services.

Making the bit rate higher requires more frequency channels to be allocated for a user. This

implies a need for several bandpass filters. Furthermore, FDMA does not use the frequency

spectrum efficiently because each frequency channel requires guard bands to minimize cross

talk between channels and the channel is occupied even if no information is transmitted.

The first generation analog cellular FDMA systems include the North America's Advanced

Mobile Phone Services (AMPS), United Kingdom's Total Access Communications System

(TACS), Scandinavia's Nordic Mobile Telephone (NMT), Germany's C-450 and Japan's Nip

pon Telephone and Telegraph (NTT).

2.1.2 TDMA

In TDMA, users must be time-synchronized and they are assigned different time slots within

a frame in which they transmit data. The entire frequency band is used by each user, but

there is no interference because time slots are non-overlapping.

TDMA is relatively simple to implement and it is very flexible for providing variable

bit rates. The data transfer rate of a certain user can be increased simply by assigning

multiple time slots. However, the transmissions of a user must be synchronized exactly

to every other user and, as a result, substantial amount of signal processing is needed for

synchronization. Since there is no frequency guard band required between channels, TDMA

utilizes the bandwidth more efficiently. Nevertheless, Adjacent Channel Interference (ACI) is

still present in this system in the time domain instead of the frequency spectrum. Sufficient

guard time between time intervals is needed to accommodate timing discrepancies and delay
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spread. Another disadvantage is that high peak power in the transmit mode of the handset

shortens the battery life. The second generation digital cellular systems based on TDMA are

the pan-European Global System for Mobile communications (GSM), IS-54 in the United

States and the Personal Digital Cellular (PDC) in Japan.

2.1.3 CDMA

In CDMA, users transmit over all time and frequency ranges and are separated on the basis

of their different symbol-pulse waveforms. CDMA requires that the bandwidth occupied by

each user be several times that of the data bandwidth, hence CDMA is possible only with

spread spectrum modulation.

The invention of spread-spectrum techniques for communications systems with anti

jamming and low probability of undesired interception capabilities lead to the idea of CDMA.

There are numerous ways of implementing CDMA: Four commonly used methods are frequency-

hopping (FH), time-hopping (TH), direct sequence (DS) and multi-carrier (MC). Hybrid

CDMA systems based on the combination of some of the techniques are also possible. In

FH-CDMA, users signature waveforms are centered on generating different carrier frequen

cies at different time intervals. The signal hops from a frequency to another according to

a pseudo-random spreading sequence. In TH-CDMA, bursts of the signal are initiated at

pseudo-random times. In DS-CDMA systems, each user's signature waveform is continuous

in the time domain and has a relatively flat spectrum. Hence, all signature waveforms occupy

the entire frequency band allocated for transmission at all times and the users are separated

neither in time nor in frequency domains. The data of users can be separated in the receivers

because the signature waveforms of DS-CDMA are formed by spreading sequences that are

unique to each user. MC-CDMA is based on a combination of code division and orthogonal

frequency-division multiplexing (OFDM).
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DS-CDMA, can be either orthogonal or nonorthogonal depending on the orthogonality of

the spreading sequences. Provided that there is no time delay and the transmission does not

cause time dispersion, the received signals of the users appear as orthogonal if orthogonal

signature waveforms are used. The spreading sequences may also be designed to be non-

orthogonal. Non-orthogonality is attractive in the sense that there is no hard limit on the

number of users since the number of codes is unconstrained. The primary advantage of

CDMA is its ability to tolerate a fair amount of interfering signals compared to FDMA and

TDMA. As a result of the interference tolerance capability of CDMA, frequency planning is

simplified. Moreover, flexibility in system design and deployment are significantly improved

since interference with others is not a problem and it is less susceptible to ACI. On the other

hand, sophisticated filtering and guard-band protection are needed with FDMA and TDMA

to ensure no ACI with similar assumptions.

However, CDMA has some disadvantages too. First, CDMA suffers from the near-far

effect, where users near to the base station impose higher interference than the users away

from it. To alleviate the near-far problem power control is required for CDMA. Multiuser

detection is another technique to deal with the near-far problem. Another disadvantage of

CDMA is its complexity of the system due to the above mentioned problem.

2.2 CDMA Signal Model

In CDMA, each user's data are multiplied by the spreading code of that user and transmitted

through a common channel. If there are k users in the system, the total transmitted signal

is the superposition of the transmitted signals by all the users in the system. Hence, the

transmitted signal is given by

2/tx(t) = hsk(t) te[o,T] (2.1)
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where ytx is the signal transmitted by the base station, bk is the data of the kth user and sk

is the signature waveform of the kih user. The amplitude of the data is assumed unity.

However, with the effect of channel, the received signal at any mobile station will be

K

y(t) = YJAkbksk{t) + o-v{t) t£[0,T] (2.2)
fe=i

where Ak is the amplitude of the received signal and v(t) is white Gaussian noise. The above

transmission, from the base station to any of the mobile station, is referred to as forward link

communication. Since there is only one base station in a cell, the base station will transmit

the data synchronously. Hence, (2.2) is sometimes referred to as the synchronous CDMA

signal model.

In an uplink communication, where all mobile stations transmit data to the base station,

it will not be possible for all mobile stations to transmit synchronously. Further, the mobile

stations are located at unequal distances from the base station, hence the signals from

different mobile stations will travel different distances to reach the base station. Then, the

signal received at the base station will be asynchronous and it is given by

K M

Vt
= J2J2 Akbk\i]sk(t -iT- rk) + av(t) (2.3)

k=\ i=-M

The above is sometimes referred to as the asynchronous CDMA signal model.

Since we are interested in the forward link CDMA communication in this thesis, let us

discuss the synchronous CDMA signal model of (2.2) further. The signature waveform is

given by

w-i

sk(t) = Y,cMt-nTc) (2.4)
71=0
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Vt

ij)(t
—

nTc

Vn

sampling at

chip rate

Figure 2.1: Chip-rate sampling

where c°k, . . . ,c^_1 are the spreading sequence of length N =

jr-
which is also called the

processing gain of the signature waveforms, and ip{t) is the pulse-shaping filter given by

m =

0 < t < Tc

otherwise

(2.5)

The signature waveforms are considered normalized

cT fN-l

s2k(t)dt ^ f^c^(i-nTc)j dt

N-l

71=0

= 1

(2.6)

(2.7)

(2.8)

which implies that c£ <E {-7aF>+7^}-

2.2.1 Discrete-time signal model

The discrete-time signal model of the CDMA signal is very useful for analysis. The discrete

model introduced here will be used to represent the CDMA signal in the sequel.
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The received synchronous CDMA signal of (2.2) is sampled at chip rate as shown in

Figure 2.1.

Then,

Vn
=

r(n+l)Tc

/ y(t)i>{t
-

nTc) dt
J nTc

•(n+l)Tc / KAn+\)TC * \

= / r^AkbkSk{t) + av{t)U{t-nTc)dt
'nTc \k=l )
K

r{n+l)Tc N-l f(n+l)Tc
= J2A^ I _

Yl C™^
"

mTMt
~

nTc) + I o-v(t)i>(t
-

nTc) dt (2.9)
fc=l nTc m=0 nTc

Hence, yn, the matched filter output of n th chip interval of the symbol, is given by

K

yn
= ^2 Akbkcl + avn (2.10)

fc=i

Defining

yo

2/tv-i

Sk and v

JV-1

v0

vn-i

(2.11)

one has

K

U
= ^Akhsk + crv (2.12)

fc=i
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In addition, defining

A =

Ax 0

0 Ak

S = [si sk] (2.13)

one has

y
= SAb(n) + av(n) (2.14)

where y is the received data of one symbol duration. The received data at the nth symbol

interval is then written as

y(n) = SAb(n) + av(n) (2.15)

2.3 Conventional Detection of CDMA Signals

Consider the discrete-time received signal

y(n) = SAb(n) + av(n) (2.16)

The conventional (matched filter) for the kth. user is

Vmfk
= sly(n) (2.17)

where sk and y(n) are as described in (2.11) and the estimated data value is

frmffc = sign(ymffc) (2.18)
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vH

„T
2/mfl

—

SiVW

J/mffc
r.T,.t~\
Sk y\nj

->mfl

->mfk

Figure 2.2: Block diagram of the matched filter

The above is the optimum solution for the single user case. It is optimum too for the

multiple user case if the signature waveforms are perfectly orthogonal to each other. But

signature waveforms are not orthogonal in practice due to the channel.

Let Pij — sjsj be the correlation coefficient between the signature waveforms st and Sj

and let

J/mf
=

2/mfl

ymf2

Vmfk

R =

1 Pl2 • • ■ P\k

fti 1 ••• :

: : '■
P(k-\)k

Pkl ■ ■ ■ Pk(k-l) 1

(2.19)

Then, the matched filter outputs of k users is given in vector form as

ym{
= RAb + v (2.20)
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The outputs at the nth symbol interval are written as

yraf(n) = RAb(n) + v (n) (2.2V

where ymf is the vector containing the matcher filter outputs of the users 1,2, .

,
k and R

is the correlation matrix of signature waveforms. In addition, A, b and v are given by

A =

A^ 0

Ak

vo

VN-l

b(n) =

Figure 2.2 shows the block diagram of the matched filter.

(2.22)

2.3.1 The near-far problem

The conventional matched filtering technique often fails due to the near-far problem. Con

sider the matched filter output (2.20) with two users only, i.e.,

ymf

1 Pn

P21 1

Ar 0

0 A2

h
+

Vl

_b2 _

v2

ymfi

ymf2

Aih + P\2A2b2 + vi

P21-4l^l +^2^2 +v2

(2.23)

(2.24)

Consider the matched filter output for user 1, which is given by (Aibi+p12A2b2 + v1). Then,

the decision for b\ is

&imf = sign(A1b1 + p12A2b2 + vx) (2.25)
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If A2 is considerably larger than A\, i.e., if the interfering user is very near the user of interest,

6lmf will be affected by the presence of A2. In other words, the MAI from the nearest users

is high.

2.4 Multiuser Detection Techniques

In this section, we review several multiuser detection techniques from the literature. All

multiuser detection techniques reviewed in this section require the knowledge of the signature

waveforms of all the active users in the cell. Hence, they are considered non-blind in contrast

to the blind multiuser detectors discussed earlier. Since the base station has the knowledge

of all the signature waveforms in the cell, these schemes are useful at the base station in

uplink communication.

2.4.1 Optimum multiuser detection

The optimum multiuser detector, which is reviewed in this section, was originally derived

in [26].

Consider the received signal from the chip rate sampler

y{n) = SAb(n) + v(n) (2.26)

The likelihood function of the above signal is

A(y(n)) = exp (-±\\y(n) - SAb(n)\A (2.27)
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whose maximization is equivalent to the minimization of

\\y{n)
- SAb(n)\\2 = \\y{n)\\2 - 2b{n)TASTy{n) + b{nfASTSAb(n)

= \\y(n)\\2-2b(n)TAym{ + b(n)TARAb(n) (2.28)

which, in turn, is equivalent to the maximization of

2b(n)TAymf - b{n)TARAb(n) (2.29)

The following were used in (2.28):

STS = R (2.30)

ym!
= STy(n) (2.31)

The above shows that the maximum likelihood detector depends only on the matched

filter output ym{.

Hence the optimum multiuser detection problem is

max „

2b(n)TAym{ - b(n)TARAb(n) (2.32)

b(n)E {-1,+1}K

The above is an NP-hard problem, i.e., the computational complexity grows exponentially

with the number of users. Hence many suboptimal multiuser detection algorithms have been

proposed in the literature and some of them are reviewed in the sequel.
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2.4.2 De-correlating receivers

In this section the de-correlating multiuser detector [25] in a synchronous channel is de

scribed.

Consider the output of the matched filter bank (2.20)

ymi
= RAb + v (2.33)

where R is the cross correlation matrix of the signature waveforms. Assuming that R is

invertible, if we pre-multiply the vector of matched filter outputs by i?_1 then

R~lymt = R~lRAb + R~lv (2.34)

ydecorr
= Ab + R~lV (2.35)

At this point, there is no interference from other users. The only interference is the back

ground noise R~~lv. The Figure 2.3 shows the block diagram of the de-correlating detector.

2.4.3 MMSE receivers

In this section, the minimum mean-square-error (MMSE) multiuser detector [19] is reviewed.

Consider the synchronous CDMA received signal in vector format, i.e.,

y
= SAb + v (2.36)

The minimum mean-square-error (MMSE) receiver is found as the solution to

arg mm

w
E[\\b -

My\\2} (2.37)
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matched filter

user 1

y{n)

matched filter

user 2

matched filter

user K

R-1

■*i>i

-tJ>2

+bK

Figure 2.3: De-correlating detector for the synchronous channel
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According to the orthogonality principle, which states that the optimum estimate is orthog

onal to the errors, one has

E[{b
- My)yTMT] = 0

= E[b(SAb + v)TMT] -

E[M(SAb + v)(SAb + v)TM]

= ATSTMT - M(SA2ST + a2I)MT = 0 (2.38)

which implies

ATSTMT = M(SA2ST + a2I)MT (2.39)

Hence, the MMSE solution is

M = AST{SA2ST + o2I)-1 (2.40)

In addition to the decorrelating receivers and the MMSE multiuser detectors discussed

above, there are many other multiuser detection techniques in the literature. Decision feed

back multiuser detectors [3], successive interference cancellers [21] and multistage multiuser

detectors [24] are some of them.

2.5 Blind Multiuser Detection

Having reviewed some non-blind multiuser detection schemes, which require some a priori

information about the interfering users and the channel, let us discuss the motivation for

blind detectors.

A multiuser detection scheme is considered blind if it requires
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1. no information of other users for interference suppression

2. no information about the channel.

Multiuser detection schemes reviewed in the earlier sections, such as the MMSE and

decorrelating receivers, assume that the codes of all users are known at the receiver and, based

on this assumption, simultaneously detect all users, hence the name multiuser detection.

While this is realistic for a base station, it is unrealistic that a mobile station would know

the codes of all of its interfering users, in order to achieve interference suppression. Hence,

blind techniques, that require little or no a priori information about the interferes, are

preferred at the mobile station.

The next issue is the blindness about the channel. In non-blind channel detection, it is

assumed that a known training data sequence transmitted through the channel is available at

the receiver. The training sequence is then used to estimate the channel coefficients, which in

turn are used for the remainder of the multiuser detection process. In time-varying situations,

some known pilot sequence is inserted into the user data stream intermittently, which leads to

a reduction in the available bandwidth. Hence, by using blind channel estimation techniques,

which do not require the transmission of training data sequences, the effective data transfer

rate can be significantly increased.

A major drawback of blind channel estimation techniques is their computational complex

ity
—

Typically, blind techniques are computationally more expensive than non-blind ones.

However, with today's ever-increasing computational power, even complex blind techniques

can be implemented in real-time. On the other hand, the channel capacity is fixed and it can

not be increased. Hence, the challenge in designing efficient future wireless communication

systems will be in developing truly blind techniques.

Motivated by these, many blind multiuser detection schemes have been proposed [1] [5]

[20] [22] [29] [31] [33]. Of these, the minimum mean-square-error blind multiuser detector [29]
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and the Kalman filter based blind multiuser detector [33] are reviewed and used in the sequel

as the baseline for comparison with the proposed IMM estimator based blind multiuser

detector.



Chapter 3

REVIEW OF MULTIPLE MODEL

ESTIMATION TECHNIQUES

3.1 The Static Multiple Model Estimator

A static multiple model estimator assumes that the true model of the system is among the

possible r models (denoted by My,j = 1,2, . . ,r) given to the estimator and that the true

model M stays fixed throughout the entire estimation process. That is,

AI E {MjYj=1 (3.41)

The prior probability that Mj is correct (i.e., the system is in mode j) is

P{Mj\Z°} = ^(0) j = l,.. ,r (3.42)

99
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where Z° is the prior information and

r

EM°) = 1 (3-43)
j=i

Using Bayes' formula, the posterior probability of model j being correct, given the mea

surement data up to k, is given by

„jW 4 PW^^PWM^^}-^^^"-1 (3.44)

p[z(k)\Zk-\MJ)P{lMj\Zk-1}
(3.45)

or

*{)~Y;i=1pm\zk-\MMk-i)
J_1' •"" (3'45)

The likelihood function Aj-(fc) of mode j at time k under the linear-Gaussian assumptions

is given by

A3(k) = p[z{k)\Zk-\ Mj] = ph(fc)] = ^h(fc); 0, Wk)} (3.47)

where Vj and 5j are the innovation and its covariance from the mode matched filter corre

sponding to mode j, respectively.

Thus a Kalman filter matched to each mode is set up yielding mode-conditioned state

estimates and the associated covariances. The probability of each mode being correct
— the

mode probability
— is obtained according to (3.46) based on its likelihood function (3.47)

relative to the other filters' likelihood functions.

A block diagram of the static multiple model estimator with two models is shown below
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Ai(fc)

A2(fc)

2•(0|0),P

1

(OjO)

(k)
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i-(0|0),P(0|0)

1
*(fc)-

Filter

Mi
^A z(k) -*

Filter

M2
-A2(fc)

x1

\
(k\k),Pl{k\k) X2

\
{k\k),P2{k\k)

(k\k) -,

\k\k) -

State estimate

and

covariance

combination

Mode

probability

update
^Mfc) ^x{k\k),P{k\k)

Figure 3.4: The static multiple model estimator with two models

in Figure 3.4.

The outputs of each mode-matched filter are the mode conditioned state estimate xJ, the

associated covariance PJ and the mode likelihood function Ar

After the filters are initialized, they run recursively on their own estimates. Their like

lihood functions are used to update the mode probabilities. The latest mode probabilities

are used to combine the mode-conditioned estimates and covariances.

Under the above assumptions, the pdf of the state of the system is a Gaussian mixture

with r terms, i.e.,

p[x(k)\Zk] = Y,»j(kW[x(k);xi(k\k),P*(k\k)] (3.48)

and the combination of the mode-conditioned estimates is done therefore as

x{k\k) = ^^{k)xj{k\k)
i=i

(3.49)
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with the covariance of the combined estimate being

T

P{k\k) = ^fij(k){Pj(k\k) + [xJ(k\k)
- x(k\k)][xj {k\k) -x{k\k)]'} (3.50)

j=i

The above is exact under the following assumptions:

1. The correct model is among the set of models considered,

2. The same model has been in effect from the initial time.

Assumption 1 can be considered a reasonable approximation; however, 2 is obviously not

true if a maneuver has started at some time within the interval [1, A;], in which case a model

change
— mode jump

— has occurred.

If the mode set includes the correct one and no mode jump occurs, then the probability

of the true mode will converge to unity, that is, this approach yields consistent estimates of

the system parameters. Otherwise the probability of the model "nearest" to the correct one

will converge to unity.

The following ad hoc modification can be made to the static MM estimator for estimating

the state in the case of switching models: An artificial lower bound is imposed on the model

probabilities (with a suitable renormalization of the remaining probabilities).

A shortcoming of the static MM estimator when used with switching models is that, in

spite of the above ad hoc modification, the mismatched filters' errors can grow to unaccept

able levels. Thus, reinitialization of the filters that are mismatched is, in general, needed.

This is accomplished by using the estimate from filter corresponding to the best matched

model in the other filters.

It should be pointed out that the above "fixes" are automatically (and rigorously) built

into the dynamic MM estimation algorithms to be discussed next.
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3.2 The Dynamic Multiple Model Estimator

In this case the mode the system is in can undergo switching in time. The system is modeled

by the equations

x(k) = F[M(k)}x(k
-

1) + v[k
-

l,M(k)] (3.51)

z(k) = H[M(k)]x(k) + w[k,M(k)} (3.52)

where M(k) denotes the mode or model "at time k" — in effect during the sampling period

ending at k. Such systems are also called jump-linear systems. The mode at time k is

assumed to be among the possible r modes

M(k) G {Mj}rJ=1 (3.53)

The continuous-valued vector x(k) and the discrete variable M(k) are sometimes referred to

as the base state and the modal state, respectively.

The Zth mode history
—

or sequence of models — through time k is denoted as

Mk'l = {Miu,.. ,Mlkl} 1 = 1,. ..,rk (3.54)

where iKj is the model index at time k from history I and

1 < iKj < r k = 1, . .

,
k (3.55)

note that the number of histories increases exponentially with time.

For example, with r = 2 one has at time k = 2 the following rk = 4 possible sequences

(histories) as shown below:
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I h,i J2,i
1 1 1

2 1 2

3 2 1

4 2 2

Table 3.1: Mode histories for r = 2 models at time k = 2

It will be assumed that the mode (model) switching, i.e., the mode jump process, is a

Markov process (Markov chain) with known mode transition probabilities

Pij
= P{M{k) = Mj\M(k

-

1) = MJ (3.56)

The event that model j is in effect at time k is denoted as

il/J(fc) = {M(fc) = il/J} (3.57)

The conditional probability of the Zth history

/.' = P{Mkl\Zk} (3.58)

will be evaluated next.

The Zth sequence of models through time k can be written as

Mk'1 = {Mfc_1'% Mj(k)} (3.59)

where sequence s through k — 1 is its parent sequence and Mj is its last element.
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Then, in view of the Markov property,

P{Mi(A:)|Mfe-1'a} = P{A/J(fr)|A/l(fc
-

1)} = Pij (3.60)

where i = sk-\, the index of the last model in the parent sequence s through k — 1.

The conditional pdf of the state at k is obtained using the total probability theorem with

respect to the mutually exclusive and exhaustive set of events, as a Gaussian mixture with

an exponentially increasing number of terms

p[x(k)\Zk] = ^2p[x{k)\MkJ, Zk]P{AIkl\Zk} (3.61)
i=i

Since to each mode sequence one has to match a filter, it can be seen that an exponentially

increasing number of filters are needed to estimate the (base) state, which makes the optimal

approach impractical.

The probability of a mode history is obtained using Bayes' formula as

/-' = P{AIkl\Zk]

= P{AIk'l\z(k),Zk~1}

= - p[z(k)\AIk'1, Zk^}P{AIk'l\Zk-1}
c

= - p[z(k)\AIkJ, Zk-l}P{AL(k), AIk~l-s\Zk^}
c

=
- p[z{k)\AIk\ Zk-1]P{MAk)\Mk-1'3 , Z*-1}^-1'"
c

= -p[z{k)\AIk'l,Zk-l]P{MJ{k)\Mk'hs}pk-1'b (3.62)
c

where c is the normalization constant.
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If the current mode depends only on the previous one (i.e., it is a Markov chain), then

fj,k<1 = - p[z{k)\Mk-1, Z^PiMjWlM^k - l)}//"1'* (3.63)

or

^l = -cP[z{k)\AIk\Zk-']p^k-1

where i = sk-i is the last model of the parent sequence s.

The above equation shows that conditioning on the entire past history is needed even if

the random parameters are Markov.

The only way to avoid the exponentially increasing number of histories, which have to

be accounted for, is by going to suboptimal techniques.

A simple-minded suboptimal technique is to keep, say, the N histories with the largest

probabilities, discard the rest, and renormalize the probabilities such that they sum up to

unity.

3.2.1 The IMM estimator

In the interacting multiple model (IMM) estimator, which is a sub-optimal approximation

to implement the optimal multiple model estimator using a small number of filters, at time

k the state estimate is computed under each possible current model using r filters, with each

filter using a different combination of the previous model-conditioned estimates — mixed

initial condition.

(3.64)
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The total probability theorem is used as follows to yield r filters running in parallel:

r

p[x(k)\Zk] = £p[x(fc)|M#),ZV{^(*)|Sfc}

r

= ^ptx^OlM^fcJ.^fcJ.Z^V^fc) (3.65)
3
= 1

The model-conditioned posterior pdf of the state, given by

p[x{k)\M3{k),z(k),Zk-i] = f^'^^tzS! PWm(k),Zk-1] (3.66)
p[z{k)\AIj{k),ZK L\

reflects one cycle of the state estimation filter matched to model Alj(k) starting with the

prior, which is the last term above.

The total probability theorem is now applied to the last term above (the prior), yielding

r

p[x(k)\Mj(k),Zk-1] = Y^P[x(k)\Mj(k),Ml(k-l),Zk-1]
i=i

■PiAI^k-l^AIjik)^'-1}
r

« Y,p[<k)\M3{k), AIt{k
-

1), {x\k -

l\k
- l),Pl(k -

l\k
-

1)}[=1
t=i

■Pi\j{k- l\k
-

1)
r

= J2pix(k)\Mj(k)>Mi(k- ^),^(k- l\k- l),P\k- l\k- 1)]
i=l

■Pi\j(k
-

l\k
-

1)

The second line above reflects the approximation that the past through A; — 1 is summa

rized by r model-conditioned estimates and covariances. The last line of (3.67) is a mixture

with weightings, denoted as pi\j{k
—

\\k
—

1), different for each current model I\Ij(k). This

(3.67)
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mixture is assumed to be a mixture of Gaussian pdfs (a Gaussian sum) and then approxi

mated via moment matching by a single Gaussian (details given later):

T

p[x{k)\M](k),Zk-1] = ^N[x{k)-E[x{k)\AIJ(k),xi{k-l\k-l)\,coY[)]

■Pi\j(k- l\k
-

1)

•■AT x{k);Y^E[x{k)\M]{k),xl{k
-

\\k
-

1)] pAj{k
-

l|Jfc
-

l),cov[-]
i=l

r

x{k)\E\x{k)\Mj{k),^2,xi{k -

l\k
-

l)pi\3{k
-

\\k
- 1)1 ,cov[-]

(3.68)

i-\

The last line above follows from the linearity of the Kalman filter and amounts to the

following: The input to the filter matched to model j is obtained from an interaction of the

r filters, which consists of the mixing of the estimates xl(k
—

l\k
—

1) with the weightings

(probabilities) Pi\3(k
—

l\k
—

1), called the mixing probabilities.

Here, the r hypotheses, instead of "fanning out" into r2 hypotheses, are "mixed" into

a new set of r hypotheses as shown in Figure 3.5. This is the key feature that yields r

hypotheses with r filters.

Figure 3.5 describes this algorithm, which consists of r interacting filters operating in

parallel. The mixing is done at the input of the filters with the probabilities, detailed later

in (3.69), conditioned on Zk~l

One cycle of the algorithm consists of the following:

1. calculation of the mixing probabilities (i,j = l,...,r). The probability that
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x^k -

l|fc
-

1), Px{k -

l\k
-

1) x2(k -

l|/c
-

1), P2(k -

l\k
-

1)

1 I

Interaction/mixing

I I
£01(fc _ !|fc _ 1)^01^ _ !|fc
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Figure 3.5: The IMM estimator (one cycle)

mode Mi was in effect at k — 1 given that AI3 is in effect at k conditioned on Z is

plU{k
-

l\k
-

1) = P{Ah(k
- l)\M3(k),Zk-1}

= -

P{A/,(fc)|M(fc
-

1), Zk-l}P{Mi{k - l)\Zk~1}

(3

The above are the mixing probabilities, which can be written as

Pi\j(k
-

l\k
-

1) = —

PijUi(k
-

1) hJ (3
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where the normalizing constants are

Cj
= J^Pi,-/ii(fc- 1) J

= !,-• ,r (3.71)
i=i

Note that the conditioning in (3.69) is on Zk~1. This is what makes it possible to carry

out the mixing at the beginning of the cycle, rather than the standard merging at the end of

the cycle.

2. mixing (j = 1, . . . ,r). Starting with xl(k
—

l\k
—

1), one computes the mixed initial

condition for the filter matched to Alj(k) according to (3.68) as

M
(k

-

l\k
-

1) = J^x'(fc
-

l|jfc
-

l)/^-
-

l|fc
-

1) j = 1, (3.72)
i=l

The covariance corresponding to the above is

P°J'(fc- 1 |A:
—

1)

(3.73)

= J2plb{k-l\k-l)lp\k-l\k-l)

+ [x^k -

l\k
-

1)
- x°i(k -

l\k
-

1)

x>(k-l\k-l)-x°J(k- l\k-l

j = l,...,r

3. mode-matched filtering (j = 1,. . ,r). The estimate (3.72) and covariance (3.73)

are used as input to the filter matched to Alj(k), which uses z(k) to yield xJ(k\k) and Pi(k\k).

The likelihood functions corresponding to the r filters

AJ(k)=p[z(k)\AIJ(k),Z
fc-ii

(3.74)

are computed using the mixed initial condition (3.72) and the associated covariance (3.73)
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as

Aj(&) = p[z(k)\M3(k),x°'(k -

l\k
- l),P0j(k -

l\k
-

1)]

(3.75)

that is,

hj{k)=H z(k);z^[k\k-l;x^(k-l\k-l)],Sj[k;P^(k~l\k-l)]

J
= 1, ■■■,?"

4. mode probability update (j = 1, . . ,r). This is done as follows:

(3.76)

or

p3(k) i\ P{AI3(k)\Zk}

= -

p[z{k)\M3{k),Zk-l]P{AI3{k)\Zk-'}

= -

A3(k) J2 P{AI3(k)\M,(k
-

1), Zk-l}P{Mz{k - l)!^-1}
i=l

1
T

= -

A3(k)^2PijPz(k- 1) j = l,...,r (3.77)
i=i

Uj(k) =
-

A3{k)c3 j = l,---,r (3.78)

where c3 is the expression from (3.71) and

(3.79)

is the normalization constant for (3.78).
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5. estimate and covariance combination. Combination of the model-conditioned

estimates and covariances is done according to the mixture equations

T

x{k\k) = Y^xJ{k\k)Pj(k) (3-80)

r

P(k\k) = J2^j(k){pJ(k\k) + [xj(k\k) -

x(k\k)}[xJ{k\k)
- x(k\k)]'\ (3.81)

This combination is only for output purposes
— it is not part of the algorithm recursions.



Chapter 4

BLIND ADAPTIVE MULTIUSER

DETECTION

4.1 Signal Model

Consider a K-user synchronous DS-CDMA system signalling through an additive white

Gaussian noise channel. Passing through a chip-matched filter followed by a chip-rate sam

pler, the discrete-time output of the receiver during one symbol interval can be modeled

as

K

y(n) = J2Akbksk(n) + av(n) n = 0, 1, . . .

,
N - 1 (4.82)

fc=i

where Ak is the received amplitude of the kth user, bk is the transmitted data bit of the fcth

user chosen independently and with equal probabilities from {
—

1,4-1}, sk(n) is the signature

waveform of the fcth user given by (4.83), v(n) is the channel noise assumed Gaussian with

standard deviation a and K is the number of users in the system. The signature waveform

36
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is given by

sk(t) = J2cW(t-nTc) (4.83)

JV-l

n=0

where (c°, . . .

, c^ 1) is the spreading sequence of length N = T/Tc, ip(t) is the pulse-shaping

filter, T is the symbol duration and Tc is the chip duration. For simplicity it is assumed that

1 0 < T < Tr

m
0 otherwise

In vector format, (4.82) can be represented as

y(n) = SAb + av{n) (4.84)

where

V(n) = [2/(0) y(l)...y(7V-l)]T (4.85)

S = [Sl s2...sfc.. sK] (4.86)

where sk
= [c0tk c1]k ■ ■ ■ cN_ltk)T

A = diag(A! A2...AK) (4.87)

b = [h b2 ..bK}T (4.88)

v(n) = [u(0) v(l)...v(N-l)]T (4.89)

With a multipath channel, the received CDMA signal is modeled as

K M

?/(n) = /ZJ2 Ak(i)bk^)sk(n -

iTs
-

rk) + av{n) (4.90)
k=\ i=-M
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where the received signature sequence sk through a time-dispersive channel is the convolution

of the spreading sequences with channel coefficients

Lc-1

sk{n) = ^2 hk{i)ck{n
-

i) (4.91)
i=i

where ck(n), n = 0, . . .

,
TV— 1 are the spreading sequences, hk{i) are the channel coefficients,

and Lc is the channel length in number of chips. In matrix format the convolution in (4.91)

can be expressed as

Sk
— Ckhk (4.92)

where

Sk
= [sfc(0) sk(l) . . . sk(N + Lc -

2) 0 ...0]T

cfc(0) 0

Ck =

ck(N-l)

0

MO)

Mi)

hk(Lc-l)

ck(0)

ck(N-l)

(4.93)

(4.94)

(4.95)

Note that due to the convolution with the channel coefficients, the received signature wave

form will be longer than N, the length of the spreading code vector at the transmitter.
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Partitioning Sk in to L segments of length N as in (4.97), the received CDMA signal in a

time-dispersive channel is given by

K L

y(n) = Yl Yl Akbk{n
- i + !)4 + av(n) (4.96)

fc=i i=i

where

sk((i-l)N)

sk((i-l)N + l)

sk{iN-l)

i = 1,... ,L (4.97)

Considering an observation interval of m bits, where m is the smoothing factor, the received

signal vector of size mN will be

ym{n) =

y{n)

y{n + l)

y(n + m
—

1)

In matrix format, the received signal ym(n) can be written as

(4.98)

ym(n) = Sb(n) + vm(n)
"

6i(n)

'

[AA ..AKSK]

_

bxin)S

+ vm(n)

b(n)

(4.99)
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where Sk is given by the block Toeplitz matrix

and

Sk = (4.100)

(4.101)

bk(n)

bk(n-L+l)

bk(n)

(n + m
— 1)

(4.102)

4.2 Channel Estimation and Multiuser Detection

The subspace-based channel estimation and multiuser detection in [28], which is used for

comparison with the proposed multiple model detector, is summarized in this Section.

The autocorrelation matrix Cm of the received signal ym(n) is

Cm = E{ym(n)ym(n)T} = SSH + a2 1.Nm (4.103)

Performing eigen-decomposition on Cm, one has

Cm = UAUH = [Us Un]
A,

An
(4.104)
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where

Us = [ui u2 ■ ■ Ud] d = (L + m
—

l)k

Un = [ud+i ud+2 . . . uNm]

As = diag(Ai,A2)... , Ad)

An = diag(Ac(+i, Ad+2, . . .

, Ajvm)

(4.105)

(4.106)

(4.107)

(4.108)

In the above, Us is called the signal subspace and Un the noise subspace. The diagonal

matrix As contains the top d largest eigenvalues corresponding to the signal subspace and

An, which is also diagonal, contains the remaining eigenvalues corresponding to the noise

subspace. Further, it can be noticed that Ad+i = Ad+2 = . . .

= A^^r = a2 where a2 is the

noise power.

Partitioning Ui into m segments of length N, one has

Ui =

and constructing the block Toeplitz matrix Ui one has

Ui

«•
2 1

Uf Ui

U" Ui

1 1

Ui Ui

(4.109)

(4.110)
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Letting

Us = [Ui U2 ..Ud)

Un = [Ud+1 Ud+2 ...UmN] (4.111)

then

C/Js: = 0 (4.112)

Or, equivalently,

J7^C1/n = 0 (4.113)

With the above notation, the channel hi can be solved through the optimization problem

min hHQh (4.114)
h

s.t. || h H2 = 1

where Q = CfUjj^Ci. The solution for the above optimization problem is the minimum

eigenvector of Q [28] .

Once the channel value is estimated, the signature waveform of the desired user at the

receiver can be constructed as

Si
= Cih (4.115)

where the channel estimate and the reconstructed signature waveform are denoted by h and

5i, respectively.
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Having reconstructed the signature waveform of the desired user, the blind multiuser

detector of the desired user can be estimated through one of many available methods. Here,

the Minimum Mean Square Error (MMSE) blind multiuser detector [29] and the Kalman

filter based blind multiuser detector [33] are discussed briefly to facilitate the development

of the new multiple model estimator and to compare their performances with that of the

new method.

4.2.1 MMSE blind multiuser detector

Note that this section reviews the algorithm in [29]. Consider the received signal yk(n)

such that k = L and let L be known at the receiver. We can notice that si, the estimated

signature waveform, and yk(n) are of the same length NL where N is the processing gain of

the spreading codes and (L
—

1) is the channel length of ISI.

The canonical representation [25] for any linear multiuser detector of user 1 is defined by

ci(n) = si + xi{n) (4.116)

conditioned on

<si,xi>=0 (4.117)

The canonical multiuser detector of user 1 is the vector c1; which minimizes the Mean

Square Error (MSE) defined as

MSE(Cl) = E{{Aibi
- cTiyk{n))2} (4.118)

subject to rn[si = 1 (4.119)
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Solving the above optimization, the MMSE multiuser detector Ci is given by

c
~

UA°1U°Si
(4 1201Cl

-

[sJuJsWsT]
(4-120)

where Us is the signal subspace and As is the diagonal matrix containing the eigenvalues

corresponding to the signal subspace.

4.2.2 Kalman filter-based blind multiuser detector

Note that this section reviews the algorithm in [33] . Consider the synchronous CDMA signal

model of (4.82). Assuming that user 1 is the user of interest, any linear multiuser detector

of user 1 can be characterized by Ci(n) such that

k = sgn(< ci,y>) = sgn(cf (n)y(n)) (4.121)

Then the challenge here is how to update ci(n) adaptively.

An equivalent representation of the canonical representation of (4.116)-(4.117) is

c\{n) = si
-

ciinunxi(n) (4.122)

where Ci)nun is the null space of the row vector sf Define e(n) as

e(n) =<ci,y >= c^(n)y{n) (4.123)

where e(n) is a white noise sequence with mean zero and variance A\. Substituting the

canonical form of (4.122) into (4.123) and re-arranging the equation, one gets

y(n) = dT(n)x{n) + e{n) (4.124)
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In a slow-varying channel, the state equation will be

x(n+l) = x{n) (4.125)

The state equation of the Kalman filter [2] is given by (4.125) and the measurement

equation is (4.124). The measurement y(n) is the matched filter output sjy(n) and the

measurement-state matrix is given by dT(n) = yT(n)c1:Ilui).

The steps of the Kalman filter-based multiuser detector are given by

x(n\n
—

1) = x(n
—

l\n
—

1) (4.126)

P(n|n-1) = P(n-l|n- 1) (4.127)

z(n \n
—

1) = dT(n)x(n\n —

1) (4.128)

u(n) = y(n)
— dT(n)x(n\n —

1) (4.129)

S(n) = R(n) + dT(n)P{n\n -

l)d(n) (4.130)

W(n) = P(n|n-l)d(n),S(n)-1 (4.131)

x(n\n) = x(n\n
—

1) + W(n)u(n) (4.132)

P{n\n) = P{n\n
-

1)
- W(n)S(n)W(n)' (4.133)

where, x(n\n
—

1) is the predicted state, P(n|n
—

1) is the state prediction covariance,

z(n\n
— 1) is the predicted measurement, u(n) is the residual/innovation, S(n) is the inno

vation covariance, H'"(n) is the Kalman gain, x(n\n) is the updated state and P(n|n) is the

updated state covariance.

After each iteration of the Kalman filter, the blind multiuser detector of the user 1 is
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given by

din) = si
-

chnu\\x(n) (4.134)

4.2.3 Motivation for a better multiuser detector

Having reviewed the MMSE blind multiuser detector [29] and the Kalman filter based mul

tiuser detector [33], we now discuss their limitations, especially with time-varying channels,

and present the motivation for a better decision-free blind multiuser detector based on mul

tiple model estimation techniques.

In order to construct the matrix Ci in (4.115), the exact knowledge of the channel length,

L —

1, is needed at the receiver. However, the knowledge of the channel length is not available

at the receiver. The performance of the above two blind multiuser detection schemes relies

on the accuracy of the estimated signature waveform of the desired user. Hence the accuracy

of the overall multiuser detection systems based on the techniques discussed above depends

on the exact knowledge of L.

In addition, the channel length L — 1 is subject to change in time-varying environments.

For example, consider a scenario where a mobile station emerges from an urban area, where

the line of sight is typically poor, and passes through an open field, where a clear line of

sight is almost always available. In such a scenario, the channel length varies significantly

between transitions into different environments and, as a result, the near-assumptions at the

receiver about the channel length can lead to significant performance degradation.

If the receiver assumes a channel length that is smaller than the actual channel length, it

becomes an underestimation problem leading to a huge mismatch between the actual and the

reconstructed signature waveforms at the receiver with the final result of poor performance.

Conversely, if the receiver assumes a channel length that is larger than the actual channel
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length, it becomes an overestimation problem, again leading to poor performance. While the

effects of underestimation are well recognized in the literature, overestimation is also equally

detrimental — the fixed amount of information available in the measurements (data) is

diluted when trying to estimate the unnecessary (noisy) higher order parameters, which

results in poor estimates for the necessary (correct order) parameters [2].

A simplistic solution for the above problems is to estimate the channel length and use

it at the receiver. But the time-varying nature of the channel provides the motivation for

solutions that do not make any hard decisions about the channel length. Hence we propose a

new soft decision1 method based on the Interacting Multiple Models (IMM) estimator, which

has been shown to be effective in target tracking problems with model uncertainty [8] [27].

In this multiple model approach we consider all possible channel lengths at the receiver

to estimate them separately and different Kalman filters are employed to find the "channel

length-conditioned" multiuser detectors. The IMM estimator algorithm is then employed to

find the overall estimate of the multiuser detector based on all channel-conditioned estimates.

4.3 Adaptive Multiuser Detection Using IMM Estima

tor

In this Section, an adaptive multiuser detector based on the IMM estimator is presented.

Figure 4.6 shows the block diagram of our proposed multiuser detection scheme, where

the received signal is fed into different channel estimators assuming different channel lengths

L = 1,2, . ,r, where r is the number of possible channel lengths. The Kalman filters in

the IMM estimator use the same received signal and the signature waveforms are estimated

assuming L = 1,2, . . ,r. The IMM estimator, which runs all channel-conditioned Kalman

^ard decisions are sometimes right, sometimes wrong. Soft decisions are never totally right, never totally

wrong [2].
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filters in parallel, produces the final multiuser detector estimate for a particular iteration

through a probabilistic combination. The steps in one cycle of the IMM estimator based

multiuser detector are summarized below. The input to each Kalman filter in the IMM block

is given by

Zi{n) = ym(n)T shl (4.135)

Since the size of the ym(n) is fixed and the size of Si^ is varying according to the estimated

channel, zeros are padded to s^j to get Zi(n) as above.

1. Initialization of the estimators: Initialize the state estimate xl(0|0), covariance Pl(0|0)

of each channel-conditioned Kalman filter and the corresponding initial mode proba

bility /^(O), i = l,2,...,r.

2. Calculation of the mixing probabilities: The mixing probability Ui/3{n— l|n— 1), which

is the probability that mode Mi was in effect at the (n
—

l)th iteration given that AI3

is in effect at the nth iteration, is given by

jil/3{n-l\n-\) = P{AIt(n-l)\M3(n),Zn^}

= —pijPi(n-l) i,j = l,...,r (4.136)
C3

where pi3 (mode transition probability) is the probability that M3 is the model at the

nth iteration given that M% was the model at the (n
—

l)th iteration. That is,

pl}
= P{AI(n) = AI3\AI{n

-

1) = A/,} (4.137)



CHAPTER 4. BLIND ADAPTIVE MULTIUSER DETECTION 49

Received signal ym{n)

Channel estimation

assuming L = 1

SU

z\(n) = ym(n)TSiA

z\{n)

Channel estimation

assuming L = r

sl,

zr{n) = ym{n)TSi,r

zr(n)

KF based MUD

(model 1)

KF based MUD

(model r)

Decision

Figure 4.6: The block diagram of the proposed IMM based blind multiuser detector.
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The normalizing constant c3 is given by

r

Cj
= J] P.j/i.C"

-

1) ) = 1, ..,r (4.138)
i=l

3. Mixing: Starting with xl(n— l|n
—

1) and Pl(n
—

l|n
—

1), the mixed initial condition for

the Kalman filters matched to the mode AI3 and the corresponding covariance matrix

are calculated as

r

x0j(n- l|n- 1) = ^x'(n-l|n-l).^b(n-l|n-l) j = l,...,r (4.139)
i=l

and

r

P0j'(n-l|n-l) = 5^/Xi|j(n- l|n-l).
i=i

{P'(n -l|n- 1) +

[x*(n -

l|n
-

1)
- x0j(n -

l|n
-

l)].[xl(n
-

l|n
-

1)
- x0j{n -

l\n
- 1)]'}(4.140)

respectively.

4. Mode matched filtering: Based on the mixed input state and the corresponding co-

variance, each Kalman filter produces the channel-conditioned state estimate xl(n\n),

covariance Pl(n|n) and the likelihood A3(n). The likelihood function of filter j is given

by

A3(n) i\ p[z{n)\Zn-\AI3)=p[u3{n)\ (4.141)

= Af[u3(n);0,S3(n)}



CHAPTER 4. BLIND ADAPTIVE MULTIUSER DETECTION 51

where z(n) is the observation at n, Zn~1 is the set of observations up to and including

n
—

1, v3 is the innovation and S3 is the innovation covariance from the jth channel-

matched filter.

5. Mode probability update: The probability of each mode at the current iteration p3{n)

is calculated as

Pj(n) = -^{n)cj j = l,...,r (4.142)

6. Estimate and covariance combination: The overall estimate of the state and the corre

sponding covariance of the IMM estimator is obtained depending on the outputs of the

r Kalman filters and the corresponding mode probabilities calculated above. Then,

r

x(n\n) =

2_.^:'(n\n)pj(n) (4.143)
i=i

r

P(n|n) = 2_] Pj(n){PKn\n) + [iJ(n|n)
— x(n\n)][xj (n\n) — x(n\n)}'} (4.144)

7. Multiuser detection: Update the multiuser detector vector Ci(n) as

si
=

Si,i s.t. ^ > p,3\/i (4.145)

ci(n) =

si
-

null(si)x(n|n) (4.146)

where 5i,j is the estimated signature waveform of the user one assuming L = i.

8. Go to step 2.
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Table 4.2: Computational requirements of the subspace based multiuser detector

Correlation matrix 0(N2)

Eigen-decomposition 0(N3)
Q 0(N3)
Other O(N)
Total computational requirement 0(N

Table 4.3: Computational requirements of the adaptive IMM estimator based multiuser

detector

Eigen-decomposition 0(N3)
Q 0(N2)
Null-space calculation 0(N'2)
r Kalman filters in parallel 0(N3)

(r + 1) estimate and covariance combinations 0(N2)

(r2 + r) probability calculations 0(r2)
Other Q(N)
Total computational requirement 0(N3)

4.4 Computational Complexity

In this section, the computational complexity of the proposed blind adaptive multiuser detec

tion scheme is discussed. The computational requirements of the subspace-based multiuser

detector [28] are summarized in Table 4.2 and those of the new IMM estimator based adap

tive multiuser detector are summarized in Table 4.3. The complexity is calculated in terms

of N, the processing gain of the signature waveform, and r, the number of models considered

by the IMM estimator. The observation interval used in (4.98) is considered to be a constant

here. The number of additions and multiplications is considered to measure the complexity.

Table 4.4 shows the CPU times taken by the two methods on a Pentium 4 processor

running at 2.4 GHz, to give an exact idea of the computational requirements.



CHAPTER 4. BLIND ADAPTIVE MULTIUSER DETECTION 53

Table 4.4: Computational requirements in terms of CPU time

Method CPU time (s)/2000 runs

Subspace-based multiuser detector assuming L = 3 6.0670

IMM estimator based adaptive multiuser detector

considering three possible models (L = 1, L = 2 and L = 3)

9.8920

While the computational load of the proposed IMM estimator based multiuser detector

is higher than that of the subspace method based detector, it should be noted that new

method handles the more complex problem of time-varying channels. As seen in the sequel,

the standard subspace method does not yield satisfactory performance with time-varying

channels whereas the IMM estimator continues to maintain superior performance. Further

more, the additional computational burden in the IMM estimator based multiuser detector

is not prohibitively high for today's computers.
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RESULTS

5.1 Multiuser Detection Simulations

In this chapter simulation examples are given to demonstrate the performance of the adaptive

multiuser detector based on the IMM estimator. In all simulations, CDMA signals are

generated using Hadamard spreading codes of processing gain N = 16.

The time-averaged output SINR at the nth iteration is computed as

'^2Zi(cii(.n)(yi(n)
-

bu(n)si)y
SINR(n) = 101og^M £1:)™K"J°, , , „, (5-147)

where M is the number of independent runs, and the subscript Z indicates that the associated

variable depends on the particular run.

The filters in the IMM estimator are initialized using

V(0) = [0 0 ..0]^1)xl j
= l,2,. .,r (5.148)

54
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with initial state estimation covariance

PJ -

I(jN-i)s(jN-i) ]
= 1- 2. . . .

,
r (5.149)

and initial mode probabilities

MO) = [1/r 1/r ..l/rtfxl (5.150)

where the subscripts indicate the size of the corresponding vector or matrix, N is the pro

cessing gain of the signature waveform and r is the number of models considered by the

multiple model estimator.

The mode transition probability matrix [pl3] (for i,j = l,...,r)is given by

\Pi.

p
1-p

r-l
•

1-p

r-l

r-l P
1-p

r-l

1-p

r-l

1-p

r-l P

(5.151)

The value of pa, the probability of staying in model i from iteration n
— 1 to n, is given by

Pa
= (1 ) i = 1,

Ti
(5.152)

where Tj is the expected sojourn time (which indicates how long, on average, the correspond

ing mode stays active), of the zth model. In our simulations we assumed that the sojourn

times of all models are equal, i.e., it is assumed that all models have the same probability of
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being the active one. Hence,

plt
=

p i = l,...,r (5.153)

The selection of off-diagonal elements of the mode transition probability matrix depends on

the switching characteristics among the various models, i.e., on the environmental conditions.

In the simulations, we assumed that all switching probabilities from one mode to another

are equal, i.e.,

Pa
= ^—ET = ^-J^- i = J

= h---,r;i^j (5.154)
r

— 1 r
— 1

Note that The IMM estimator is not very sensitive to the errors in the assumed model

transition probability values. In realistic highly maneuvering target tracking problems [8]

[27], where these probabilities or Kalman filter parameters like process noise variances are

not known exactly, the IMM has been proven to be very effective and robust.

The following scenarios were simulated to demonstrate the performance of the proposed

estimator/multiuser detector.

1. Comparison of subspace and KF methods in synchronous CDMA channel: In this exam

ple a stationary synchronous CDMA channel is considered. There are four interfering

users with 20 dB interference i.e., A\ = A\ = A\ = A\ = 1. Subspace method was

initialized with 200 samples and the Kalman filter was initialized as specified above.

Figure 5.7 shows the time-averaged SINR of the subspace method vs. that of the

Kalman filter based blind multiuser detector. Kalman filter reaches the desired SINR

in just 5 iterations while the subspace-based method, which was initialized with 200

samples to compute the correlation matrix, is slow to reach the desired SINR.
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Figure 5.7: Time averaged SINR vs. time for 500 runs. Performance of the KF based

multiuser detection is compared with that of the subspace method [29] in a stationary syn

chronous CDMA channel.

Figure 5.8 shows the BER vs. Signal to Noise Ratio (SNR) of the desired user. In

a synchronous channel with no ISI, the Kalman filter performs better than subspace-

based multiuser detector showing 2 dB gain at a bit error rate of 10~4.

2. Performance of the subspace/KF/IMM estimator based methods in a stationary channel

of unknown length: In this example a stationary time-dispersive channel of unknown

length is considered. There are two interfering users with 30 dB interference, i.e.,

A2 = A\ = v 10. In this case the interfering users are stronger than the user of

interest. In the simulations, 75 samples are used for estimating the channel response.
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SNR (dB)

Figure 5.8: BER vs. SNR of the desired user for 500 runs. Performance of the KF based

multiuser detection is compared with that of the subspace method [29] in a stationary syn

chronous CDMA channel.
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The actual channel is generated with one symbol ISI (i.e., L = 2).

Figure 5.9 shows the time averaged SINR vs. iteration number of the IMM estimator

based multiuser detector without the knowledge of the channel length (except for the

possible range, L
= 1 to L = 3). For comparison, results from the subspace method

based detectors [28] assuming L = 1, L = 2 and L = 3 are also plotted. The subspace

method based detectors were initialized with 75 samples while the IMM estimator based

multiuser detector was initialized with no such data. It can be seen from Figure 5.9

that the subspace method assuming the exact channel order performs better than the

IMM estimator. However, the knowledge of the channel is not available at the receiver

in practical wireless communication applications and hence this example, where the

channel order is assumed to be known, is not a realistic problem. In spite of this,

the results for this problem are shown here to give a balanced view about the relative

merits of the various algorithms.1 The subspace method assuming an overestimated

channel (L = 3) gives an output SINR of almost OdB compared to the —15 dB output

SINR produced by the subspace method assuming an underestimated channel (L = 1).

Overall, the IMM estimator without the knowledge of the channel order performs

reasonably well, but still needs improvement.

Figure 5.10 shows the time averaged SINR vs. iteration number of the IMM estimator

based multiuser detector against the Kalman filter based multiuser detectors assuming

L = 1, L = 2 and L = 3. Here, the IMM estimator performs better than all Kalman

filter based multiuser detectors till about n = 1000, after which time the Kalman filter

based multiuser detector with the exact channel order equals the performance of the

IMM estimator based multiuser detector. The Kalman filter based multiuser detectors

:Our next simulation example with dynamic (time-varying) channels, where one cannot reasonably assume

that the channel parameters will always be known, will show that the IMM estimator based detector performs

substantially better than any subspace method.
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with over estimated (L = 3) and under estimated (L = 1) channel assumptions gives 2

dB and 0 dB output SINR, respectively. These results are far better compared to those

obtained with the subspace method, which produced 0 dB and — 15dB, respectively,

with overestimated and underestimated channels. Overall, the IMM estimator based

multiuser detector performs better than the Kalman filter based multiuser detector

with or without the exact knowledge of the channel length.

Figure 5.11 shows the mode probabilities of the IMM estimator. The mode probabilities

were all initialized with equal values. In less than 100 iterations, the IMM estimator

adjusts itself to the true model with the mode probability of the true model being

nearly equal to 1.

Figure 5.12 shows the BER vs. SNR of the desired user for the Kalman filter and

subspace methods assuming L = 1
,
L = 2 and L = 3 as well as the BER of the IMM

based multiuser detector without the knowledge of the channel. The plot shows that

IMM based multiuser detector performs better than all other methods except for the

subspace method assuming the exact knowledge of the channel.

In this example, a stationary environment, where the channel length is not known

but remains unchanged throughout the whole simulation process, was considered. The

IMM estimator based multiuser detector with no knowledge of the channel is found to

adjust quickly to the exact model of the channel. But, the performance is still below

the subspace based multiuser detector with the exact knowledge of the channel. This

is an artificial scenario in that the channel characteristics, including the length, vary

over time in realistic wireless communication scenarios. In the next example, we will

show what happens to the performances of the subspace method based detector and

KF based detector in a time-varying environment when compared against that of the

IMM estimator based adaptive multiuser detector.
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Figure 5.9: Time-averaged SINR in 250 runs. Performance of the IMM based estimator is

compared with that of the subspace methods [28] assuming L = 1 (no ISI), L = 2 (1 symbol

ISI) and L = 3 (2 symbol ISI) in a stationary channel of unknown length.
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Figure 5.10: Time-averaged SINR in 250 runs. Performance of the IMM based estimator is

compared with that of the Kalman filter assuming L = 1 (no ISI), L = 2 (1 symbol ISI) and

L = 3 (2 symbol ISI) in a stationary channel of unknown length.
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Figure 5.11: The mode probabilities of the three models in the IMM estimator.
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Figure 5.12: BER vs. SNR of the desired user for 250 runs. Performances of the KF based

multiuser detection assuming no ISI, 1 symbol ISI and 2 symbol ISI (L = 1, L = 2 and

L = 3) and the performances of the subspace method assuming no ISI, 1 symbol ISI and 2

symbol ISI (L = 1, L = 2 and L = 3) are compared with that of the IMM based multiuser

detector in a stationary channel of unknown length.
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3. Performance of subspace/KF/IMM estimator based methods in a time-varying time-

dispersive channel under perfect power controlled situations: In this example, a time-

varying time-dispersive channel of unknown length is considered. There are four inter

fering users with 20 dB interference, i.e., A\ = A\ = A\ = A\ = \ (i.e., a perfect power

controlled situation). From start to n = 500, the actual channel is generated with no

ISI (i.e., L = 1) and from n = 501 to 1000 the channel is generated with one symbol

ISI (L = 2).

Figure 5.13 shows the performance of the subspace method assuming no ISI vs. that

of the subspace method assuming 1 symbol ISI. Since there is no ISI in the first half of

the iteration, the subspace-based multiuser detector assuming no ISI (L = 1) performs

well, while the subspace-based multiuser detector assuming one symbol ISI (L = 2),

an overestimated channel model, produces almost 0 dB output SINR. Even though the

second method is an over-modeling of the channel, the estimated signature waveform,

which is twice as long as the actual one, contains a huge mismatch leading to poor

results. During the second half of the simulation, the subspace-based multiuser detector

assuming one symbol ISI (L = 2) performs well producing an output SINR of 18 dB

at the end of the iteration, while the subspace-based multiuser detector assuming no

ISI (L = 1), an underestimated channel, performs poorly giving an output SINR of

-15 dB. This also shows that underestimation as well as overestimation lead to poor

results, with the former being more damaging usually.

Figure 5.14 shows the performance of the KF based multiuser detector assuming no ISI

vs. that of the KF based multiuser detector assuming 1 symbol ISI. Again, during the

first half of the simulation, where the actual channel contains no ISI, the Kalman filter

assuming 1 symbol ISI fails. During the second half, where the actual channel contains

1 symbol ISI, the Kalman filter assuming no ISI fails. However, the performance in
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a model mismatched Kalman filter is better than that of the corresponding model

mismatched subspace-based multiuser detector.

Figure 5.15 shows the performance of the IMM based adaptive multiuser detector that

assumes no knowledge of the channel length (except for the possible range). The plots

of the subspace methods assuming no ISI and assuming 1 symbol ISI are also shown

for comparison. It clearly shows that the IMM based multiuser detector adaptively

adjusts for channel changes, resulting in better SINR values. This is because of the

adaptive bandwidth capability of the IMM estimator [2].

Figure 5.16 shows the SINR values of the IMM estimator based adaptive multiuser de

tector that assumes no knowledge of the channel length (except for the possible range)

against that of the KF based multiuser detectors (previously shown in Figure 5.14).

During the first half of the simulation, where the channel is perfectly known and the

signature waveforms are perfectly orthogonal, the IMM estimator performs exactly

the same as the Kalman filter. During the second half of the iteration, where there

is ISI present in the channel and hence the signature waveforms are not orthogonal,

performance of the IMM estimator remains steady compared with that of the Kalman

filter.

Figure 5.17 shows the mode probability of the IMM estimator. It is clear that in just

50 iterations the IMM estimator adjusts itself to the correct model. This is due to the

soft decision capability of the IMM estimator.

Figure 5.18 shows the BER performances of the subspace-based multiuser detector

assuming L = 1 and L = 2 and the performances of the Kalman filter based multiuser

detector assuming L = 1 and L = 2 against that of the IMM estimator based adaptive

multiuser detector assuming no knowledge of the channel length except for its range.

The IMM estimator reaches a BER of 10"2 at an SINR of 20 dB while for all the other
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Figure 5.13: Time averaged SINR vs. time for 500 runs. Performance of the subspace
method assuming no ISI (L = 1) is compared with that of the subspace method assuming
one symbol ISI {L = 2).

schemes the BER remains at around 0.5. This clearly shows that the proposed adaptive

multiuser detection scheme is far better than the subspace or KF based multiuser

detectors in a time-varying channel.
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Figure 5.14: Time averaged SINR vs. time for 500 runs. Performance of the Kalman filter

method assuming no ISI (L = 1) is compared with that of the Kalman method assuming

one symbol ISI (L = 2).
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Figure 5.15: Time averaged SINR vs. time for 500 runs. Performance of the IMM estimator

based detector is compared with that of the subspace method based detector.
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Figure 5.16: Time averaged SINR vs. time for 500 runs. Performance of the IMM estimator

based detector is compared with that of the Kalman filter based detector.
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SNR(dB)

Figure 5.18: BER vs. SNR of the desired user for 500 runs. Performances of the KF

based multiuser detectors assuming no ISI and 1 symbol ISI (L = 1 and L = 2) and the

performances of the subspace method assuming no ISI and 1 symbol ISI (L = 1 and L = 2)
are compared with that of the IMM estimator based multiuser detector in a time-varying

channel.



Chapter 6

SUMMARY

6.1 Conclusions

In this thesis a multiple model estimator based adaptive blind multiuser detection scheme

for handling time-varying time-dispersive channels was proposed. It was shown through sim

ulations that in order for the standard multiuser detectors to work well, the exact knowledge

of the channel length was necessary. However, the exact information of the channel length is

not available at the receiver at all times, especially with time-varying channels. Under these

circumstances, the performance of standard detectors suffers significantly. In our proposed

method, the receiver considers different possible channel lengths separately and adjusts itself

adaptively to the correct channel model. The channel adaptation is performed through the

Interacting Multiple Model (IMM) estimator, which is well known in maneuvering target

tracking applications. Simulation results show that our proposed method adaptively adjusts

to channel length changes with time-varying channels and consistently outperforms standard

multiuser detectors based on the subspace method or the single Kalman filter.

73
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6.2 Future Work

The main focus of this thesis is to show that under time-varying conditions the channel

estimation, hence multiuser detection, assuming a fixed channel may lead to very poor

results and to propose an adaptive multiuser detection scheme that considers the possibility

of time-varying channel lengths by running multiple channel models at the receiver in parallel

to counter the uncertainty.

In this thesis, we considered the channel order uncertainty at symbol level, i.e., our re

ceiver models assumed the cases of 1) no ISI, 2) one symbol ISI, 3) two symbol ISI, and so on.

Hence, a future challenge will be to consider the uncertainty at the chip level of the signature

waveforms. However, the subspace-based channel estimation method we used in this thesis

for comparison cannot easily handle such situations. Alternative techniques like, for example,

the Expectation-Maximization (EM) approach may be useful for channel estimation in such

situations. In addition, the subspace-based channel estimation, whose performance relies on

the accuracy of the computed correlation matrix, is not a good choice for handling rapidly

time-varying channels. Hence, finding a better channel estimation scheme for rapid channel

variations may be another subject of future research.

Another issue of interest in multiple model estimation schemes is deciding how many

models to consider at the receiver. While too few models at the receiver may lead to poor

performance because of the lack of coverage of the true state evolution model by the mode set,

too many models can also lead to equally poor results. This is because the mode probabilities

of individual filters, including that of the actual model, become too small in this case and

the resulting estimates become too noisy
— the probability sum of 1 is distributed among

too many models. This issue has been considered in target tracking literature and the result

is an improvement to the IMM estimator in the form of Variable Structure IMM (VS-IMM)

estimator [9] [10] [11] [12] [13] [14]. The VS-IMM estimator selects the "most probable"
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models to be used by the IMM estimator out of a set of all possible models in a systematic

manner. The objective here is to select the minimal subset of filters that are needed to

yield satisfactory estimates subject to, possibly scenario-dependent, constraints. Hence, the

VS-IMM estimator typically outperforms the IMM estimator in terms of performance and

complexity in problems that require a huge number of models to describe all possible state

evolutions.

Thus, another future direction for research is to explore the development of the VS-IMM

estimator for channel estimation in rapidly time-varying channels. With such an algorithm

we may consider not only the time-dispersive channels but also other wireless channel models

in order to build a more robust communication system.
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