Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8324
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBandler, John W.en_US
dc.contributor.authorSong, Jianen_US
dc.date.accessioned2014-06-18T16:42:33Z-
dc.date.available2014-06-18T16:42:33Z-
dc.date.created2010-11-25en_US
dc.date.issued1991-04en_US
dc.identifier.otheropendissertations/3538en_US
dc.identifier.other4555en_US
dc.identifier.other1662353en_US
dc.identifier.urihttp://hdl.handle.net/11375/8324-
dc.description.abstract<p>This thesis addresses itself to computer-aided yield-driver design of microwave circuits using implementable, efficient approximation and optimization techniques. Basic concepts of yield-driven design are identified. A number of approaches to statistical design are reviewed. Their features and limitations are discussed. The recent generalized ℓp centering approach and one-sided ℓ₁ optimization algorithm are addressed. A highly efficient quadratic approximation, specially applicable to statistical design, is presented. A set of very simple and easy-to-implement formulas is derived. This approximation technique is also applied to gradient functions of circuit responses to provide higher accuracy. A combined approach to attack large scale problem is presented, which explores the most powerful capabilities of hardware and software available to us, namely, the supercomputer, efficient quadratic modeling, fast and dedicated simulation, and state-of-the-art optimization. Yield-driven design techniques are extended to deal with tunable circuits by considering tuning tolerances. A 5-channel waveguide multiplexer is considered as an example both for the combined approach and for the treatment of tunable circuits. Yield-driven design of nonlinear microwave circuits with statistically characterized devices is considered. Relevant concepts are introduced. The efficient Integrated Gradient Approximation Technique (IGAT) is presented in the statistical design environment, which avoids the prohibitive computational burden resulting from the traditional perturbation scheme. A novel approach, called Feasible Adjoint Sensitivity Technique (FAST), is derived to calculate sensitivities of nonlinear circuits that are simulated in the harmonic balance environment. By taking advantage of the computational efficiency of adjoint analysis and the implementational simplicity of the perturbation technique, FAST is responsible for great savings of computational effort required for yield-driven design of nonlinear circuits.</p>en_US
dc.subjectElectrical and Computer Engineeringen_US
dc.subjectElectrical and Computer Engineeringen_US
dc.titleAdvances in yield-driven design of microwave circuitsen_US
dc.typethesisen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.7 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue